Forked from
Alchemy Viewer / Alchemy Viewer
10776 commits behind the upstream repository.
-
Andrey Kleshchev authored
# Conflicts: # indra/llrender/llgl.cpp # indra/llrender/llrendertarget.cpp # indra/newview/VIEWER_VERSION.txt # indra/newview/app_settings/shaders/class1/deferred/materialF.glsl # indra/newview/llfloaterpreference.cpp # indra/newview/llviewercontrol.cpp # indra/newview/llviewermenu.cpp # indra/newview/llviewertexturelist.cpp # indra/newview/llvovolume.cpp
Andrey Kleshchev authored# Conflicts: # indra/llrender/llgl.cpp # indra/llrender/llrendertarget.cpp # indra/newview/VIEWER_VERSION.txt # indra/newview/app_settings/shaders/class1/deferred/materialF.glsl # indra/newview/llfloaterpreference.cpp # indra/newview/llviewercontrol.cpp # indra/newview/llviewermenu.cpp # indra/newview/llviewertexturelist.cpp # indra/newview/llvovolume.cpp
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
llmodel.cpp 49.62 KiB
/**
* @file llmodel.cpp
* @brief Model handling implementation
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llmodel.h"
#include "llmemory.h"
#include "llconvexdecomposition.h"
#include "llsdserialize.h"
#include "llvector4a.h"
#include "llmd5.h"
#ifdef LL_USESYSTEMLIBS
# include <zlib.h>
#else
# include "zlib-ng/zlib.h"
#endif
std::string model_names[] =
{
"lowest_lod",
"low_lod",
"medium_lod",
"high_lod",
"physics_mesh"
};
const int MODEL_NAMES_LENGTH = sizeof(model_names) / sizeof(std::string);
LLModel::LLModel(LLVolumeParams& params, F32 detail)
: LLVolume(params, detail),
mNormalizedScale(1,1,1),
mPelvisOffset( 0.0f ),
mStatus(NO_ERRORS),
mSubmodelID(0)
{
mDecompID = -1;
mLocalID = -1;
}
LLModel::~LLModel()
{
if (mDecompID >= 0)
{
LLConvexDecomposition::getInstance()->deleteDecomposition(mDecompID);
}
}
//static
std::string LLModel::getStatusString(U32 status)
{
const static std::string status_strings[(S32)INVALID_STATUS] = {"status_no_error", "status_vertex_number_overflow","bad_element"};
if(status < INVALID_STATUS)
{
if(status_strings[status] == std::string())
{
//LL_ERRS() << "No valid status string for this status: " << (U32)status << LL_ENDL();
}
return status_strings[status] ;
}
//LL_ERRS() << "Invalid model status: " << (U32)status << LL_ENDL();
return std::string() ;
}
void LLModel::offsetMesh( const LLVector3& pivotPoint )
{
LLVector4a pivot( pivotPoint[VX], pivotPoint[VY], pivotPoint[VZ] );
for (std::vector<LLVolumeFace>::iterator faceIt = mVolumeFaces.begin(); faceIt != mVolumeFaces.end(); )
{
std::vector<LLVolumeFace>:: iterator currentFaceIt = faceIt++;
LLVolumeFace& face = *currentFaceIt;
LLVector4a *pos = (LLVector4a*) face.mPositions;
for (U32 i=0; i<face.mNumVertices; ++i )
{
pos[i].add( pivot );
}
}
}
void LLModel::remapVolumeFaces()
{
for (U32 i = 0; i < getNumVolumeFaces(); ++i)
{
mVolumeFaces[i].remap();
}
}
void LLModel::optimizeVolumeFaces()
{
for (U32 i = 0; i < getNumVolumeFaces(); ++i)
{
mVolumeFaces[i].optimize();
}
}
struct MaterialBinding
{
int index;
std::string matName;
};
struct MaterialSort
{
bool operator()(const MaterialBinding& lhs, const MaterialBinding& rhs)
{
return LLStringUtil::compareInsensitive(lhs.matName, rhs.matName) < 0;
}
};
void LLModel::sortVolumeFacesByMaterialName()
{
std::vector<MaterialBinding> bindings;
bindings.resize(mVolumeFaces.size());
for (int i = 0; i < bindings.size(); i++)
{
bindings[i].index = i;
if(i < mMaterialList.size())
{
bindings[i].matName = mMaterialList[i];
}
}
std::sort(bindings.begin(), bindings.end(), MaterialSort());
std::vector< LLVolumeFace > new_faces;
// remap the faces to be in the same order the mats now are...
//
new_faces.resize(bindings.size());
for (int i = 0; i < bindings.size(); i++)
{
new_faces[i] = mVolumeFaces[bindings[i].index];
if(i < mMaterialList.size())
{
mMaterialList[i] = bindings[i].matName;
}
}
mVolumeFaces = new_faces;
}
void LLModel::trimVolumeFacesToSize(U32 new_count, LLVolume::face_list_t* remainder)
{
llassert(new_count <= LL_SCULPT_MESH_MAX_FACES);
if (new_count && (getNumVolumeFaces() > new_count))
{
// Copy out remaining volume faces for alternative handling, if provided
//
if (remainder)
{
(*remainder).assign(mVolumeFaces.begin() + new_count, mVolumeFaces.end());
}
// Trim down to the final set of volume faces (now stuffed to the gills!)
//
mVolumeFaces.resize(new_count);
}
}
// Shrink the model to fit
// on a 1x1x1 cube centered at the origin.
// The positions and extents
// multiplied by mNormalizedScale
// and offset by mNormalizedTranslation
// to be the "original" extents and position.
// Also, the positions will fit
// within the unit cube.
void LLModel::normalizeVolumeFaces()
{
if (!mVolumeFaces.empty())
{
LLVector4a min, max;
// For all of the volume faces
// in the model, loop over
// them and see what the extents
// of the volume along each axis.
min = mVolumeFaces[0].mExtents[0];
max = mVolumeFaces[0].mExtents[1];
for (U32 i = 1; i < mVolumeFaces.size(); ++i)
{
LLVolumeFace& face = mVolumeFaces[i];
update_min_max(min, max, face.mExtents[0]);
update_min_max(min, max, face.mExtents[1]);
if (face.mTexCoords)
{
LLVector2& min_tc = face.mTexCoordExtents[0];
LLVector2& max_tc = face.mTexCoordExtents[1];
min_tc = face.mTexCoords[0];
max_tc = face.mTexCoords[0];
for (U32 j = 1; j < face.mNumVertices; ++j)
{
update_min_max(min_tc, max_tc, face.mTexCoords[j]);
}
}
else
{
face.mTexCoordExtents[0].set(0,0);
face.mTexCoordExtents[1].set(1,1);
}
}
// Now that we have the extents of the model
// we can compute the offset needed to center
// the model at the origin.
// Compute center of the model
// and make it negative to get translation
// needed to center at origin.
LLVector4a trans;
trans.setAdd(min, max);
trans.mul(-0.5f);
// Compute the total size along all
// axes of the model.
LLVector4a size;
size.setSub(max, min);
// Prevent division by zero.
F32 x = size[0];
F32 y = size[1];
F32 z = size[2];
F32 w = size[3];
if (fabs(x)<F_APPROXIMATELY_ZERO)
{
x = 1.0;
}
if (fabs(y)<F_APPROXIMATELY_ZERO)
{
y = 1.0;
}
if (fabs(z)<F_APPROXIMATELY_ZERO)
{
z = 1.0;
}
size.set(x,y,z,w);
// Compute scale as reciprocal of size
LLVector4a scale;
scale.splat(1.f);
scale.div(size);
LLVector4a inv_scale(1.f);
inv_scale.div(scale);
for (U32 i = 0; i < mVolumeFaces.size(); ++i)
{
LLVolumeFace& face = mVolumeFaces[i];
// We shrink the extents so
// that they fall within
// the unit cube.
// VFExtents change
face.mExtents[0].add(trans);
face.mExtents[0].mul(scale);
face.mExtents[1].add(trans);
face.mExtents[1].mul(scale);
// For all the positions, we scale
// the positions to fit within the unit cube.
LLVector4a* pos = (LLVector4a*) face.mPositions;
LLVector4a* norm = (LLVector4a*) face.mNormals;
LLVector4a* t = (LLVector4a*)face.mTangents;
for (U32 j = 0; j < face.mNumVertices; ++j)
{
pos[j].add(trans);
pos[j].mul(scale);
if (norm && !norm[j].equals3(LLVector4a::getZero()))
{
norm[j].mul(inv_scale);
norm[j].normalize3();
}
if (t)
{
F32 w = t[j].getF32ptr()[3];
t[j].mul(inv_scale);
t[j].normalize3();
t[j].getF32ptr()[3] = w;
}
}
}
// mNormalizedScale is the scale at which
// we would need to multiply the model
// by to get the original size of the
// model instead of the normalized size.
LLVector4a normalized_scale;
normalized_scale.splat(1.f);
normalized_scale.div(scale);
mNormalizedScale.set(normalized_scale.getF32ptr());
mNormalizedTranslation.set(trans.getF32ptr());
mNormalizedTranslation *= -1.f;
// remember normalized scale so original dimensions can be recovered for mesh processing (i.e. tangent generation)
for (auto& face : mVolumeFaces)
{
face.mNormalizedScale = mNormalizedScale;
}
}
}
void LLModel::getNormalizedScaleTranslation(LLVector3& scale_out, LLVector3& translation_out)
{
scale_out = mNormalizedScale;
translation_out = mNormalizedTranslation;
}
LLVector3 LLModel::getTransformedCenter(const LLMatrix4& mat)
{
LLVector3 ret;
if (!mVolumeFaces.empty())
{
LLMatrix4a m;
m.loadu(mat);
LLVector4a minv,maxv;
LLVector4a t;
m.affineTransform(mVolumeFaces[0].mPositions[0], t);
minv = maxv = t;
for (S32 i = 0; i < mVolumeFaces.size(); ++i)
{
LLVolumeFace& face = mVolumeFaces[i];
for (U32 j = 0; j < face.mNumVertices; ++j)
{
m.affineTransform(face.mPositions[j],t);
update_min_max(minv, maxv, t);
}
}
minv.add(maxv);
minv.mul(0.5f);
ret.set(minv.getF32ptr());
}
return ret;
}
void LLModel::setNumVolumeFaces(S32 count)
{
mVolumeFaces.resize(count);
}
void LLModel::setVolumeFaceData(
S32 f,
LLStrider<LLVector3> pos,
LLStrider<LLVector3> norm,
LLStrider<LLVector2> tc,
LLStrider<U16> ind,
U32 num_verts,
U32 num_indices)
{
llassert(num_indices % 3 == 0);
LLVolumeFace& face = mVolumeFaces[f];
face.resizeVertices(num_verts);
face.resizeIndices(num_indices);
LLVector4a::memcpyNonAliased16((F32*) face.mPositions, (F32*) pos.get(), num_verts*4*sizeof(F32));
if (norm.get())
{
LLVector4a::memcpyNonAliased16((F32*) face.mNormals, (F32*) norm.get(), num_verts*4*sizeof(F32));
}
else
{
//ll_aligned_free_16(face.mNormals);
face.mNormals = NULL;
}
if (tc.get())
{
U32 tex_size = (num_verts*2*sizeof(F32)+0xF)&~0xF;
LLVector4a::memcpyNonAliased16((F32*) face.mTexCoords, (F32*) tc.get(), tex_size);
}
else
{
//ll_aligned_free_16(face.mTexCoords);
face.mTexCoords = NULL;
}
U32 size = (num_indices*2+0xF)&~0xF;
LLVector4a::memcpyNonAliased16((F32*) face.mIndices, (F32*) ind.get(), size);
}
void LLModel::addFace(const LLVolumeFace& face)
{
if (face.mNumVertices == 0)
{
LL_ERRS() << "Cannot add empty face." << LL_ENDL;
}
mVolumeFaces.push_back(face);
if (mVolumeFaces.size() > MAX_MODEL_FACES)
{
LL_ERRS() << "Model prims cannot have more than " << MAX_MODEL_FACES << " faces!" << LL_ENDL;
}
}
void LLModel::generateNormals(F32 angle_cutoff)
{
//generate normals for all faces by:
// 1 - Create faceted copy of face with no texture coordinates
// 2 - Weld vertices in faceted copy that are shared between triangles with less than "angle_cutoff" difference between normals
// 3 - Generate smoothed set of normals based on welding results
// 4 - Create faceted copy of face with texture coordinates
// 5 - Copy smoothed normals to faceted copy, using closest normal to triangle normal where more than one normal exists for a given position
// 6 - Remove redundant vertices from new faceted (now smooth) copy
angle_cutoff = cosf(angle_cutoff);
for (U32 j = 0; j < mVolumeFaces.size(); ++j)
{
LLVolumeFace& vol_face = mVolumeFaces[j];
if (vol_face.mNumIndices > 65535)
{
LL_WARNS("MESHSKININFO") << "Too many vertices for normal generation to work." << LL_ENDL;
continue;
}
//create faceted copy of current face with no texture coordinates (step 1)
LLVolumeFace faceted;
LLVector4a* src_pos = (LLVector4a*) vol_face.mPositions;
//LLVector4a* src_norm = (LLVector4a*) vol_face.mNormals;
faceted.resizeVertices(vol_face.mNumIndices);
faceted.resizeIndices(vol_face.mNumIndices);
//bake out triangles into temporary face, clearing texture coordinates
for (U32 i = 0; i < vol_face.mNumIndices; ++i)
{
U32 idx = vol_face.mIndices[i];
faceted.mPositions[i] = src_pos[idx];
faceted.mTexCoords[i] = LLVector2(0,0);
faceted.mIndices[i] = i;
}
//generate normals for temporary face
for (U32 i = 0; i < faceted.mNumIndices; i += 3)
{ //for each triangle
U16 i0 = faceted.mIndices[i+0];
U16 i1 = faceted.mIndices[i+1];
U16 i2 = faceted.mIndices[i+2];
LLVector4a& p0 = faceted.mPositions[i0];
LLVector4a& p1 = faceted.mPositions[i1];
LLVector4a& p2 = faceted.mPositions[i2];
LLVector4a& n0 = faceted.mNormals[i0];
LLVector4a& n1 = faceted.mNormals[i1];
LLVector4a& n2 = faceted.mNormals[i2];
LLVector4a lhs, rhs;
lhs.setSub(p1, p0);
rhs.setSub(p2, p0);
n0.setCross3(lhs, rhs);
n0.normalize3();
n1 = n0;
n2 = n0;
}
//weld vertices in temporary face, respecting angle_cutoff (step 2)
faceted.optimize(angle_cutoff);
//generate normals for welded face based on new topology (step 3)
for (U32 i = 0; i < faceted.mNumVertices; i++)
{
faceted.mNormals[i].clear();
}
for (U32 i = 0; i < faceted.mNumIndices; i += 3)
{ //for each triangle
U16 i0 = faceted.mIndices[i+0];
U16 i1 = faceted.mIndices[i+1];
U16 i2 = faceted.mIndices[i+2];
LLVector4a& p0 = faceted.mPositions[i0];
LLVector4a& p1 = faceted.mPositions[i1];
LLVector4a& p2 = faceted.mPositions[i2];
LLVector4a& n0 = faceted.mNormals[i0];
LLVector4a& n1 = faceted.mNormals[i1];
LLVector4a& n2 = faceted.mNormals[i2];
LLVector4a lhs, rhs;
lhs.setSub(p1, p0);
rhs.setSub(p2, p0);
LLVector4a n;
n.setCross3(lhs, rhs);
n0.add(n);
n1.add(n);
n2.add(n);
}
//normalize normals and build point map
LLVolumeFace::VertexMapData::PointMap point_map;
for (U32 i = 0; i < faceted.mNumVertices; ++i)
{
faceted.mNormals[i].normalize3();
LLVolumeFace::VertexMapData v;
v.setPosition(faceted.mPositions[i]);
v.setNormal(faceted.mNormals[i]);
point_map[LLVector3(v.getPosition().getF32ptr())].push_back(v);
}
//create faceted copy of current face with texture coordinates (step 4)
LLVolumeFace new_face;
//bake out triangles into new face
new_face.resizeIndices(vol_face.mNumIndices);
new_face.resizeVertices(vol_face.mNumIndices);
for (U32 i = 0; i < vol_face.mNumIndices; ++i)
{
U32 idx = vol_face.mIndices[i];
LLVolumeFace::VertexData v;
new_face.mPositions[i] = vol_face.mPositions[idx];
new_face.mNormals[i].clear();
new_face.mIndices[i] = i;
}
if (vol_face.mTexCoords)
{
for (U32 i = 0; i < vol_face.mNumIndices; i++)
{
U32 idx = vol_face.mIndices[i];
new_face.mTexCoords[i] = vol_face.mTexCoords[idx];
}
}
else
{
//ll_aligned_free_16(new_face.mTexCoords);
new_face.mTexCoords = NULL;
}
//generate normals for new face
for (U32 i = 0; i < new_face.mNumIndices; i += 3)
{ //for each triangle
U16 i0 = new_face.mIndices[i+0];
U16 i1 = new_face.mIndices[i+1];
U16 i2 = new_face.mIndices[i+2];
LLVector4a& p0 = new_face.mPositions[i0];
LLVector4a& p1 = new_face.mPositions[i1];
LLVector4a& p2 = new_face.mPositions[i2];
LLVector4a& n0 = new_face.mNormals[i0];
LLVector4a& n1 = new_face.mNormals[i1];
LLVector4a& n2 = new_face.mNormals[i2];
LLVector4a lhs, rhs;
lhs.setSub(p1, p0);
rhs.setSub(p2, p0);
n0.setCross3(lhs, rhs);
n0.normalize3();
n1 = n0;
n2 = n0;
}
//swap out normals in new_face with best match from point map (step 5)
for (U32 i = 0; i < new_face.mNumVertices; ++i)
{
//LLVolumeFace::VertexData v = new_face.mVertices[i];
LLVector4a ref_norm = new_face.mNormals[i];
LLVolumeFace::VertexMapData::PointMap::iterator iter = point_map.find(LLVector3(new_face.mPositions[i].getF32ptr()));
if (iter != point_map.end())
{
F32 best = -2.f;
for (U32 k = 0; k < iter->second.size(); ++k)
{
LLVector4a& n = iter->second[k].getNormal();
F32 cur = n.dot3(ref_norm).getF32();
if (cur > best)
{
best = cur;
new_face.mNormals[i] = n;
}
}
}
}
//remove redundant vertices from new face (step 6)
new_face.optimize();
mVolumeFaces[j] = new_face;
}
}
std::string LLModel::getName() const
{
return mRequestedLabel.empty() ? mLabel : mRequestedLabel;
}
//static
LLSD LLModel::writeModel(
std::ostream& ostr,
LLModel* physics,
LLModel* high,
LLModel* medium,
LLModel* low,
LLModel* impostor,
const LLModel::Decomposition& decomp,
BOOL upload_skin,
BOOL upload_joints,
BOOL lock_scale_if_joint_position,
BOOL nowrite,
BOOL as_slm,
int submodel_id)
{
LLSD mdl;
LLModel* model[] =
{
impostor,
low,
medium,
high,
physics
};
bool skinning = upload_skin && high && !high->mSkinWeights.empty();
if (skinning)
{ //write skinning block
mdl["skin"] = high->mSkinInfo.asLLSD(upload_joints, lock_scale_if_joint_position);
}
if (!decomp.mBaseHull.empty() ||
!decomp.mHull.empty())
{
mdl["physics_convex"] = decomp.asLLSD();
if (!decomp.mHull.empty() && !as_slm)
{ //convex decomposition exists, physics mesh will not be used (unless this is an slm file)
model[LLModel::LOD_PHYSICS] = NULL;
}
}
else if (submodel_id)
{
const LLModel::Decomposition fake_decomp;
mdl["secondary"] = true;
mdl["submodel_id"] = submodel_id;
mdl["physics_convex"] = fake_decomp.asLLSD();
model[LLModel::LOD_PHYSICS] = NULL;
}
if (as_slm)
{ //save material list names
for (U32 i = 0; i < high->mMaterialList.size(); ++i)
{
mdl["material_list"][i] = high->mMaterialList[i];
}
}
for (U32 idx = 0; idx < MODEL_NAMES_LENGTH; ++idx)
{
if (model[idx] && (model[idx]->getNumVolumeFaces() > 0) && model[idx]->getVolumeFace(0).mPositions != NULL)
{
LLVector3 min_pos = LLVector3(model[idx]->getVolumeFace(0).mPositions[0].getF32ptr());
LLVector3 max_pos = min_pos;
//find position domain
for (S32 i = 0; i < model[idx]->getNumVolumeFaces(); ++i)
{ //for each face
const LLVolumeFace& face = model[idx]->getVolumeFace(i);
for (U32 j = 0; j < face.mNumVertices; ++j)
{
update_min_max(min_pos, max_pos, face.mPositions[j].getF32ptr());
}
}
LLVector3 pos_range = max_pos - min_pos;
for (S32 i = 0; i < model[idx]->getNumVolumeFaces(); ++i)
{ //for each face
const LLVolumeFace& face = model[idx]->getVolumeFace(i);
if (face.mNumVertices < 3)
{ //don't export an empty face
mdl[model_names[idx]][i]["NoGeometry"] = true;
continue;
}
LLSD::Binary verts(face.mNumVertices*3*2);
LLSD::Binary tc(face.mNumVertices*2*2);
LLSD::Binary normals(face.mNumVertices*3*2);
LLSD::Binary tangents(face.mNumVertices * 4 * 2);
LLSD::Binary indices(face.mNumIndices*2);
U32 vert_idx = 0;
U32 norm_idx = 0;
//U32 tan_idx = 0;
U32 tc_idx = 0;
LLVector2* ftc = (LLVector2*) face.mTexCoords;
LLVector2 min_tc;
LLVector2 max_tc;
if (ftc)
{
min_tc = ftc[0];
max_tc = min_tc;
//get texture coordinate domain
for (U32 j = 0; j < face.mNumVertices; ++j)
{
update_min_max(min_tc, max_tc, ftc[j]);
}
}
LLVector2 tc_range = max_tc - min_tc;
for (U32 j = 0; j < face.mNumVertices; ++j)
{ //for each vert
F32* pos = face.mPositions[j].getF32ptr();
//position
for (U32 k = 0; k < 3; ++k)
{ //for each component
//convert to 16-bit normalized across domain
U16 val = (U16) (((pos[k]-min_pos.mV[k])/pos_range.mV[k])*65535);
U8* buff = (U8*) &val;
//write to binary buffer
verts[vert_idx++] = buff[0];
verts[vert_idx++] = buff[1];
}
if (face.mNormals)
{ //normals
F32* norm = face.mNormals[j].getF32ptr();
for (U32 k = 0; k < 3; ++k)
{ //for each component
//convert to 16-bit normalized
U16 val = (U16) ((norm[k]+1.f)*0.5f*65535);
U8* buff = (U8*) &val;
//write to binary buffer
normals[norm_idx++] = buff[0];
normals[norm_idx++] = buff[1];
}
}
#if 0 // keep this code for now in case we want to support transporting tangents with mesh assets
if (face.mTangents)
{ //normals
F32* tangent = face.mTangents[j].getF32ptr();
for (U32 k = 0; k < 4; ++k)
{ //for each component
//convert to 16-bit normalized
U16 val = (U16)((tangent[k] + 1.f) * 0.5f * 65535);
U8* buff = (U8*)&val;
//write to binary buffer
tangents[tan_idx++] = buff[0];
tangents[tan_idx++] = buff[1];
}
}
#endif
//texcoord
if (face.mTexCoords)
{
F32* src_tc = (F32*) face.mTexCoords[j].mV;
for (U32 k = 0; k < 2; ++k)
{ //for each component
//convert to 16-bit normalized
U16 val = (U16) ((src_tc[k]-min_tc.mV[k])/tc_range.mV[k]*65535);
U8* buff = (U8*) &val;
//write to binary buffer
tc[tc_idx++] = buff[0];
tc[tc_idx++] = buff[1];
}
}
}
U32 idx_idx = 0;
for (U32 j = 0; j < face.mNumIndices; ++j)
{
U8* buff = (U8*) &(face.mIndices[j]);
indices[idx_idx++] = buff[0];
indices[idx_idx++] = buff[1];
}
//write out face data
mdl[model_names[idx]][i]["PositionDomain"]["Min"] = min_pos.getValue();
mdl[model_names[idx]][i]["PositionDomain"]["Max"] = max_pos.getValue();
mdl[model_names[idx]][i]["NormalizedScale"] = face.mNormalizedScale.getValue();
mdl[model_names[idx]][i]["Position"] = verts;
if (face.mNormals)
{
mdl[model_names[idx]][i]["Normal"] = normals;
}
#if 0 // keep this code for now in case we decide to transport tangents with mesh assets
if (face.mTangents)
{
mdl[model_names[idx]][i]["Tangent"] = tangents;
}
#endif
if (face.mTexCoords)
{
mdl[model_names[idx]][i]["TexCoord0Domain"]["Min"] = min_tc.getValue();
mdl[model_names[idx]][i]["TexCoord0Domain"]["Max"] = max_tc.getValue();
mdl[model_names[idx]][i]["TexCoord0"] = tc;
}
mdl[model_names[idx]][i]["TriangleList"] = indices;
if (skinning)
{
//write out skin weights
//each influence list entry is up to 4 24-bit values
// first 8 bits is bone index
// last 16 bits is bone influence weight
// a bone index of 0xFF signifies no more influences for this vertex
std::stringstream ostr;
for (U32 j = 0; j < face.mNumVertices; ++j)
{
LLVector3 pos(face.mPositions[j].getF32ptr());
weight_list& weights = model[idx]->getJointInfluences(pos);
S32 count = 0;
for (weight_list::iterator iter = weights.begin(); iter != weights.end(); ++iter)
{
// Note joint index cannot exceed 255.
if (iter->mJointIdx < 255 && iter->mJointIdx >= 0)
{
U8 idx = (U8) iter->mJointIdx;
ostr.write((const char*) &idx, 1);
U16 influence = (U16) (iter->mWeight*65535);
ostr.write((const char*) &influence, 2);
++count;
}
}
U8 end_list = 0xFF;
if (count < 4)
{
ostr.write((const char*) &end_list, 1);
}
}
//copy ostr to binary buffer
std::string data = ostr.str();
const U8* buff = (U8*) data.data();
U32 bytes = data.size();
LLSD::Binary w(bytes);
for (U32 j = 0; j < bytes; ++j)
{
w[j] = buff[j];
}
mdl[model_names[idx]][i]["Weights"] = w;
}
}
}
}
return writeModelToStream(ostr, mdl, nowrite, as_slm);
}
LLSD LLModel::writeModelToStream(std::ostream& ostr, LLSD& mdl, BOOL nowrite, BOOL as_slm)
{
std::string::size_type cur_offset = 0;
LLSD header;
if (as_slm && mdl.has("material_list"))
{ //save material binding names to header
header["material_list"] = mdl["material_list"];
}
std::string skin;
if (mdl.has("skin"))
{ //write out skin block
skin = zip_llsd(mdl["skin"]);
U32 size = skin.size();
if (size > 0)
{
header["skin"]["offset"] = (LLSD::Integer) cur_offset;
header["skin"]["size"] = (LLSD::Integer) size;
cur_offset += size;
}
}
std::string decomposition;
if (mdl.has("physics_convex"))
{ //write out convex decomposition
decomposition = zip_llsd(mdl["physics_convex"]);
U32 size = decomposition.size();
if (size > 0)
{
header["physics_convex"]["offset"] = (LLSD::Integer) cur_offset;
header["physics_convex"]["size"] = (LLSD::Integer) size;
cur_offset += size;
}
}
if (mdl.has("submodel_id"))
{ //write out submodel id
header["submodel_id"] = (LLSD::Integer)mdl["submodel_id"];
}
std::string out[MODEL_NAMES_LENGTH];
for (S32 i = 0; i < MODEL_NAMES_LENGTH; i++)
{
if (mdl.has(model_names[i]))
{
out[i] = zip_llsd(mdl[model_names[i]]);
U32 size = out[i].size();
header[model_names[i]]["offset"] = (LLSD::Integer) cur_offset;
header[model_names[i]]["size"] = (LLSD::Integer) size;
cur_offset += size;
}
}
if (!nowrite)
{
LLSDSerialize::toBinary(header, ostr);
if (!skin.empty())
{ //write skin block
ostr.write((const char*) skin.data(), header["skin"]["size"].asInteger());
}
if (!decomposition.empty())
{ //write decomposition block
ostr.write((const char*) decomposition.data(), header["physics_convex"]["size"].asInteger());
}
for (S32 i = 0; i < MODEL_NAMES_LENGTH; i++)
{
if (!out[i].empty())
{
ostr.write((const char*) out[i].data(), header[model_names[i]]["size"].asInteger());
}
}
}
return header;
}
LLModel::weight_list& LLModel::getJointInfluences(const LLVector3& pos)
{
//1. If a vertex has been weighted then we'll find it via pos and return its weight list
weight_map::iterator iterPos = mSkinWeights.begin();
weight_map::iterator iterEnd = mSkinWeights.end();
for ( ; iterPos!=iterEnd; ++iterPos )
{
if ( jointPositionalLookup( iterPos->first, pos ) )
{
return iterPos->second;
}
}
//2. Otherwise we'll use the older implementation
weight_map::iterator iter = mSkinWeights.find(pos);
if (iter != mSkinWeights.end())
{
if ((iter->first - pos).magVec() > 0.1f)
{
LL_ERRS() << "Couldn't find weight list." << LL_ENDL;
}
return iter->second;
}
else
{ //no exact match found, get closest point
const F32 epsilon = 1e-5f;
weight_map::iterator iter_up = mSkinWeights.lower_bound(pos);
weight_map::iterator iter_down = iter_up;
if (iter_up != mSkinWeights.end())
{
iter_down = ++iter_up;
}
weight_map::iterator best = iter_up;
F32 min_dist = (iter->first - pos).magVec();
bool done = false;
while (!done)
{ //search up and down mSkinWeights from lower bound of pos until a
//match is found within epsilon. If no match is found within epsilon,
//return closest match
done = true;
if (iter_up != mSkinWeights.end() && ++iter_up != mSkinWeights.end())
{
done = false;
F32 dist = (iter_up->first - pos).magVec();
if (dist < epsilon)
{
return iter_up->second;
}
if (dist < min_dist)
{
best = iter_up;
min_dist = dist;
}
}
if (iter_down != mSkinWeights.begin() && --iter_down != mSkinWeights.begin())
{
done = false;
F32 dist = (iter_down->first - pos).magVec();
if (dist < epsilon)
{
return iter_down->second;
}
if (dist < min_dist)
{
best = iter_down;
min_dist = dist;
}
}
}
return best->second;
}
}
void LLModel::setConvexHullDecomposition(
const LLModel::convex_hull_decomposition& decomp)
{
mPhysics.mHull = decomp;
mPhysics.mMesh.clear();
updateHullCenters();
}
void LLModel::updateHullCenters()
{
mHullCenter.resize(mPhysics.mHull.size());
mHullPoints = 0;
mCenterOfHullCenters.clear();
for (U32 i = 0; i < mPhysics.mHull.size(); ++i)
{
LLVector3 cur_center;
for (U32 j = 0; j < mPhysics.mHull[i].size(); ++j)
{
cur_center += mPhysics.mHull[i][j];
}
mCenterOfHullCenters += cur_center;
cur_center *= 1.f/mPhysics.mHull[i].size();
mHullCenter[i] = cur_center;
mHullPoints += mPhysics.mHull[i].size();
}
if (mHullPoints > 0)
{
mCenterOfHullCenters *= 1.f / mHullPoints;
llassert(mPhysics.hasHullList());
}
}
bool LLModel::loadModel(std::istream& is)
{
mSculptLevel = -1; // default is an error occured
LLSD header;
{
if (!LLSDSerialize::fromBinary(header, is, 1024*1024*1024))
{
LL_WARNS("MESHSKININFO") << "Mesh header parse error. Not a valid mesh asset!" << LL_ENDL;
return false;
}
}
if (header.has("material_list"))
{ //load material list names
mMaterialList.clear();
for (U32 i = 0; i < header["material_list"].size(); ++i)
{
mMaterialList.push_back(header["material_list"][i].asString());
}
}
mSubmodelID = header.has("submodel_id") ? header["submodel_id"].asInteger() : false;
static const std::string lod_name[] =
{
"lowest_lod",
"low_lod",
"medium_lod",
"high_lod",
"physics_mesh",
};
const S32 MODEL_LODS = 5;
S32 lod = llclamp((S32) mDetail, 0, MODEL_LODS);
if (header[lod_name[lod]]["offset"].asInteger() == -1 ||
header[lod_name[lod]]["size"].asInteger() == 0 )
{ //cannot load requested LOD
LL_WARNS("MESHSKININFO") << "LoD data is invalid!" << LL_ENDL;
return false;
}
bool has_skin = header["skin"]["offset"].asInteger() >=0 &&
header["skin"]["size"].asInteger() > 0;
if ((lod == LLModel::LOD_HIGH) && !mSubmodelID)
{ //try to load skin info and decomp info
std::ios::pos_type cur_pos = is.tellg();
loadSkinInfo(header, is);
is.seekg(cur_pos);
}
if ((lod == LLModel::LOD_HIGH || lod == LLModel::LOD_PHYSICS) && !mSubmodelID)
{
std::ios::pos_type cur_pos = is.tellg();
loadDecomposition(header, is);
is.seekg(cur_pos);
}
is.seekg(header[lod_name[lod]]["offset"].asInteger(), std::ios_base::cur);
if (unpackVolumeFaces(is, header[lod_name[lod]]["size"].asInteger()))
{
if (has_skin)
{
//build out mSkinWeight from face info
for (S32 i = 0; i < getNumVolumeFaces(); ++i)
{
const LLVolumeFace& face = getVolumeFace(i);
if (face.mWeights)
{
for (S32 j = 0; j < face.mNumVertices; ++j)
{
LLVector4a& w = face.mWeights[j];
std::vector<JointWeight> wght;
for (S32 k = 0; k < 4; ++k)
{
S32 idx = (S32) w[k];
F32 f = w[k] - idx;
if (f > 0.f)
{
wght.push_back(JointWeight(idx, f));
}
}
if (!wght.empty())
{
LLVector3 pos(face.mPositions[j].getF32ptr());
mSkinWeights[pos] = wght;
}
}
}
}
}
return true;
}
else
{
LL_WARNS("MESHSKININFO") << "unpackVolumeFaces failed!" << LL_ENDL;
}
return false;
}
bool LLModel::isMaterialListSubset( LLModel* ref )
{
int refCnt = ref->mMaterialList.size();
int modelCnt = mMaterialList.size();
for (U32 src = 0; src < modelCnt; ++src)
{
bool foundRef = false;
for (U32 dst = 0; dst < refCnt; ++dst)
{
//LL_INFOS()<<mMaterialList[src]<<" "<<ref->mMaterialList[dst]<<LL_ENDL;
foundRef = mMaterialList[src] == ref->mMaterialList[dst];
if ( foundRef )
{
break;
}
}
if (!foundRef)
{
LL_INFOS("MESHSKININFO") << "Could not find material " << mMaterialList[src] << " in reference model " << ref->mLabel << LL_ENDL;
return false;
}
}
return true;
}
bool LLModel::needToAddFaces( LLModel* ref, int& refFaceCnt, int& modelFaceCnt )
{
bool changed = false;
if ( refFaceCnt< modelFaceCnt )
{
refFaceCnt += modelFaceCnt - refFaceCnt;
changed = true;
}
else
if ( modelFaceCnt < refFaceCnt )
{
modelFaceCnt += refFaceCnt - modelFaceCnt;
changed = true;
}
return changed;
}
bool LLModel::matchMaterialOrder(LLModel* ref, int& refFaceCnt, int& modelFaceCnt )
{
//Is this a subset?
//LODs cannot currently add new materials, e.g.
//1. ref = a,b,c lod1 = d,e => This is not permitted
//2. ref = a,b,c lod1 = c => This would be permitted
bool isASubset = isMaterialListSubset( ref );
if ( !isASubset )
{
LL_INFOS("MESHSKININFO")<<"Material of model is not a subset of reference."<<LL_ENDL;
return false;
}
if (mMaterialList.size() > ref->mMaterialList.size())
{
LL_INFOS("MESHSKININFO") << "Material of model has more materials than a reference." << LL_ENDL;
// We passed isMaterialListSubset, so materials are a subset, but subset isn't supposed to be
// larger than original and if we keep going, reordering will cause a crash
return false;
}
std::map<std::string, U32> index_map;
//build a map of material slot names to face indexes
bool reorder = false;
std::set<std::string> base_mat;
std::set<std::string> cur_mat;
for (U32 i = 0; i < mMaterialList.size(); i++)
{
index_map[ref->mMaterialList[i]] = i;
//if any material name does not match reference, we need to reorder
reorder |= ref->mMaterialList[i] != mMaterialList[i];
base_mat.insert(ref->mMaterialList[i]);
cur_mat.insert(mMaterialList[i]);
}
if (reorder && (base_mat == cur_mat)) //don't reorder if material name sets don't match
{
std::vector<LLVolumeFace> new_face_list;
new_face_list.resize(mMaterialList.size());
std::vector<std::string> new_material_list;
new_material_list.resize(mMaterialList.size());
//rebuild face list so materials have the same order
//as the reference model
for (U32 i = 0; i < mMaterialList.size(); ++i)
{
U32 ref_idx = index_map[mMaterialList[i]];
if (i < mVolumeFaces.size())
{
new_face_list[ref_idx] = mVolumeFaces[i];
}
new_material_list[ref_idx] = mMaterialList[i];
}
llassert(new_material_list == ref->mMaterialList);
mVolumeFaces = new_face_list;
//override material list with reference model ordering
mMaterialList = ref->mMaterialList;
}
return true;
}
bool LLModel::loadSkinInfo(LLSD& header, std::istream &is)
{
S32 offset = header["skin"]["offset"].asInteger();
S32 size = header["skin"]["size"].asInteger();
if (offset >= 0 && size > 0)
{
is.seekg(offset, std::ios_base::cur);
LLSD skin_data;
if (LLUZipHelper::unzip_llsd(skin_data, is, size) == LLUZipHelper::ZR_OK)
{
mSkinInfo.fromLLSD(skin_data);
return true;
}
}
return false;
}
bool LLModel::loadDecomposition(LLSD& header, std::istream& is)
{
S32 offset = header["physics_convex"]["offset"].asInteger();
S32 size = header["physics_convex"]["size"].asInteger();
if (offset >= 0 && size > 0 && !mSubmodelID)
{
is.seekg(offset, std::ios_base::cur);
LLSD data;
if (LLUZipHelper::unzip_llsd(data, is, size) == LLUZipHelper::ZR_OK)
{
mPhysics.fromLLSD(data);
updateHullCenters();
}
}
return true;
}
LLMeshSkinInfo::LLMeshSkinInfo():
mPelvisOffset(0.0),
mLockScaleIfJointPosition(false),
mInvalidJointsScrubbed(false),
mJointNumsInitialized(false)
{
}
LLMeshSkinInfo::LLMeshSkinInfo(LLSD& skin):
mPelvisOffset(0.0),
mLockScaleIfJointPosition(false),
mInvalidJointsScrubbed(false),
mJointNumsInitialized(false)
{
fromLLSD(skin);
}
void LLMeshSkinInfo::fromLLSD(LLSD& skin)
{
if (skin.has("joint_names"))
{
for (U32 i = 0; i < skin["joint_names"].size(); ++i)
{
mJointNames.push_back(skin["joint_names"][i]);
mJointNums.push_back(-1);
}
}
if (skin.has("inverse_bind_matrix"))
{
for (U32 i = 0; i < skin["inverse_bind_matrix"].size(); ++i)
{
LLMatrix4 mat;
for (U32 j = 0; j < 4; j++)
{
for (U32 k = 0; k < 4; k++)
{
mat.mMatrix[j][k] = skin["inverse_bind_matrix"][i][j*4+k].asReal();
}
}
mInvBindMatrix.push_back(LLMatrix4a(mat));
}
if (mJointNames.size() != mInvBindMatrix.size())
{
LL_WARNS("MESHSKININFO") << "Joints vs bind matrix count mismatch. Dropping joint bindings." << LL_ENDL;
mJointNames.clear();
mJointNums.clear();
mInvBindMatrix.clear();
}
}
if (skin.has("bind_shape_matrix"))
{
LLMatrix4 mat;
for (U32 j = 0; j < 4; j++)
{
for (U32 k = 0; k < 4; k++)
{
mat.mMatrix[j][k] = skin["bind_shape_matrix"][j*4+k].asReal();
}
}
mBindShapeMatrix.loadu(mat);
}
if (skin.has("alt_inverse_bind_matrix"))
{
for (U32 i = 0; i < skin["alt_inverse_bind_matrix"].size(); ++i)
{
LLMatrix4 mat;
for (U32 j = 0; j < 4; j++)
{
for (U32 k = 0; k < 4; k++)
{
mat.mMatrix[j][k] = skin["alt_inverse_bind_matrix"][i][j*4+k].asReal();
}
}
mAlternateBindMatrix.push_back(LLMatrix4a(mat));
}
}
if (skin.has("pelvis_offset"))
{
mPelvisOffset = skin["pelvis_offset"].asReal();
}
if (skin.has("lock_scale_if_joint_position"))
{
mLockScaleIfJointPosition = skin["lock_scale_if_joint_position"].asBoolean();
}
else
{
mLockScaleIfJointPosition = false;
}
updateHash();
}
LLSD LLMeshSkinInfo::asLLSD(bool include_joints, bool lock_scale_if_joint_position) const
{
LLSD ret;
for (U32 i = 0; i < mJointNames.size(); ++i)
{
ret["joint_names"][i] = mJointNames[i];
for (U32 j = 0; j < 4; j++)
{
for (U32 k = 0; k < 4; k++)
{
ret["inverse_bind_matrix"][i][j*4+k] = mInvBindMatrix[i].mMatrix[j][k];
}
}
}
for (U32 i = 0; i < 4; i++)
{
for (U32 j = 0; j < 4; j++)
{
ret["bind_shape_matrix"][i*4+j] = mBindShapeMatrix.mMatrix[i][j];
}
}
if ( include_joints && mAlternateBindMatrix.size() > 0 )
{
for (U32 i = 0; i < mJointNames.size(); ++i)
{
for (U32 j = 0; j < 4; j++)
{
for (U32 k = 0; k < 4; k++)
{
ret["alt_inverse_bind_matrix"][i][j*4+k] = mAlternateBindMatrix[i].mMatrix[j][k];
}
}
}
if (lock_scale_if_joint_position)
{
ret["lock_scale_if_joint_position"] = lock_scale_if_joint_position;
}
ret["pelvis_offset"] = mPelvisOffset;
}
return ret;
}
void LLMeshSkinInfo::updateHash()
{
// get hash of data relevant to render batches
LLMD5 hash;
//mJointNames
for (auto& name : mJointNames)
{
hash.update(name);
}
//mJointNums
hash.update((U8*)&(mJointNums[0]), sizeof(S32) * mJointNums.size());
//mInvBindMatrix
F32* src = mInvBindMatrix[0].getF32ptr();
for (int i = 0; i < mInvBindMatrix.size() * 16; ++i)
{
S32 t = llround(src[i] * 10000.f);
hash.update((U8*)&t, sizeof(S32));
}
//hash.update((U8*)&(mInvBindMatrix[0]), sizeof(LLMatrix4a) * mInvBindMatrix.size());
hash.finalize();
U64 digest[2];
hash.raw_digest((U8*) digest);
mHash = digest[0];
}
U32 LLMeshSkinInfo::sizeBytes() const
{
U32 res = sizeof(LLUUID); // mMeshID
res += sizeof(std::vector<std::string>) + sizeof(std::string) * mJointNames.size();
for (U32 i = 0; i < mJointNames.size(); ++i)
{
res += mJointNames[i].size(); // actual size, not capacity
}
res += sizeof(std::vector<S32>) + sizeof(S32) * mJointNums.size();
res += sizeof(std::vector<LLMatrix4>) + 16 * sizeof(float) * mInvBindMatrix.size();
res += sizeof(std::vector<LLMatrix4>) + 16 * sizeof(float) * mAlternateBindMatrix.size();
res += 16 * sizeof(float); //mBindShapeMatrix
res += sizeof(float) + 3 * sizeof(bool);
return res;
}
LLModel::Decomposition::Decomposition(LLSD& data)
{
fromLLSD(data);
}
void LLModel::Decomposition::fromLLSD(LLSD& decomp)
{
if (decomp.has("HullList") && decomp.has("Positions"))
{
// updated for const-correctness. gcc is picky about this type of thing - Nyx
const LLSD::Binary& hulls = decomp["HullList"].asBinary();
const LLSD::Binary& position = decomp["Positions"].asBinary();
U16* p = (U16*) &position[0];
mHull.resize(hulls.size());
LLVector3 min;
LLVector3 max;
LLVector3 range;
if (decomp.has("Min"))
{
min.setValue(decomp["Min"]);
max.setValue(decomp["Max"]);
}
else
{
min.set(-0.5f, -0.5f, -0.5f);
max.set(0.5f, 0.5f, 0.5f);
}
range = max-min;
for (U32 i = 0; i < hulls.size(); ++i)
{
U16 count = (hulls[i] == 0) ? 256 : hulls[i];
std::set<U64> valid;
//must have at least 4 points
//llassert(count > 3);
for (U32 j = 0; j < count; ++j)
{
U64 test = (U64) p[0] | ((U64) p[1] << 16) | ((U64) p[2] << 32);
//point must be unique
//llassert(valid.find(test) == valid.end());
valid.insert(test);
mHull[i].push_back(LLVector3(
(F32) p[0]/65535.f*range.mV[0]+min.mV[0],
(F32) p[1]/65535.f*range.mV[1]+min.mV[1],
(F32) p[2]/65535.f*range.mV[2]+min.mV[2]));
p += 3;
}
//each hull must contain at least 4 unique points
//llassert(valid.size() > 3);
}
}
if (decomp.has("BoundingVerts"))
{
const LLSD::Binary& position = decomp["BoundingVerts"].asBinary();
U16* p = (U16*) &position[0];
LLVector3 min;
LLVector3 max;
LLVector3 range;
if (decomp.has("Min"))
{
min.setValue(decomp["Min"]);
max.setValue(decomp["Max"]);
}
else
{
min.set(-0.5f, -0.5f, -0.5f);
max.set(0.5f, 0.5f, 0.5f);
}
range = max-min;
U16 count = (U16)(position.size()/6);
for (U32 j = 0; j < count; ++j)
{
mBaseHull.push_back(LLVector3(
(F32) p[0]/65535.f*range.mV[0]+min.mV[0],
(F32) p[1]/65535.f*range.mV[1]+min.mV[1],
(F32) p[2]/65535.f*range.mV[2]+min.mV[2]));
p += 3;
}
}
else
{
//empty base hull mesh to indicate decomposition has been loaded
//but contains no base hull
mBaseHullMesh.clear();
}
}
U32 LLModel::Decomposition::sizeBytes() const
{
U32 res = sizeof(LLUUID); // mMeshID
res += sizeof(LLModel::convex_hull_decomposition) + sizeof(std::vector<LLVector3>) * mHull.size();
for (U32 i = 0; i < mHull.size(); ++i)
{
res += mHull[i].size() * sizeof(LLVector3);
}
res += sizeof(LLModel::hull) + sizeof(LLVector3) * mBaseHull.size();
res += sizeof(std::vector<LLModel::PhysicsMesh>) + sizeof(std::vector<LLModel::PhysicsMesh>) * mMesh.size();
for (U32 i = 0; i < mMesh.size(); ++i)
{
res += mMesh[i].sizeBytes();
}
res += sizeof(std::vector<LLModel::PhysicsMesh>) * 2;
res += mBaseHullMesh.sizeBytes() + mPhysicsShapeMesh.sizeBytes();
return res;
}
bool LLModel::Decomposition::hasHullList() const
{
return !mHull.empty() ;
}
LLSD LLModel::Decomposition::asLLSD() const
{
LLSD ret;
if (mBaseHull.empty() && mHull.empty())
{ //nothing to write
return ret;
}
//write decomposition block
// ["physics_convex"]["HullList"] -- list of 8 bit integers, each entry represents a hull with specified number of points
// ["physics_convex"]["Position"] -- list of 16-bit integers to be decoded to given domain, encoded 3D points
// ["physics_convex"]["BoundingVerts"] -- list of 16-bit integers to be decoded to given domain, encoded 3D points representing a single hull approximation of given shape
//get minimum and maximum
LLVector3 min;
if (mHull.empty())
{
min = mBaseHull[0];
}
else
{
min = mHull[0][0];
}
LLVector3 max = min;
LLSD::Binary hulls(mHull.size());
U32 total = 0;
for (U32 i = 0; i < mHull.size(); ++i)
{
U32 size = mHull[i].size();
total += size;
hulls[i] = (U8) (size);
for (U32 j = 0; j < mHull[i].size(); ++j)
{
update_min_max(min, max, mHull[i][j]);
}
}
for (U32 i = 0; i < mBaseHull.size(); ++i)
{
update_min_max(min, max, mBaseHull[i]);
}
ret["Min"] = min.getValue();
ret["Max"] = max.getValue();
LLVector3 range = max-min;
if (!hulls.empty())
{
ret["HullList"] = hulls;
}
if (total > 0)
{
LLSD::Binary p(total*3*2);
U32 vert_idx = 0;
for (U32 i = 0; i < mHull.size(); ++i)
{
std::set<U64> valid;
llassert(!mHull[i].empty());
for (U32 j = 0; j < mHull[i].size(); ++j)
{
U64 test = 0;
const F32* src = mHull[i][j].mV;
for (U32 k = 0; k < 3; k++)
{
//convert to 16-bit normalized across domain
U16 val = (U16) (((src[k]-min.mV[k])/range.mV[k])*65535);
if(valid.size() < 3)
{
switch (k)
{
case 0: test = test | (U64) val; break;
case 1: test = test | ((U64) val << 16); break;
case 2: test = test | ((U64) val << 32); break;
};
valid.insert(test);
}
U8* buff = (U8*) &val;
//write to binary buffer
p[vert_idx++] = buff[0];
p[vert_idx++] = buff[1];
//makes sure we haven't run off the end of the array
llassert(vert_idx <= p.size());
}
}
//must have at least 3 unique points
llassert(valid.size() > 2);
}
ret["Positions"] = p;
}
//llassert(!mBaseHull.empty());
if (!mBaseHull.empty())
{
LLSD::Binary p(mBaseHull.size()*3*2);
U32 vert_idx = 0;
for (U32 j = 0; j < mBaseHull.size(); ++j)
{
const F32* v = mBaseHull[j].mV;
for (U32 k = 0; k < 3; k++)
{
//convert to 16-bit normalized across domain
U16 val = (U16) (((v[k]-min.mV[k])/range.mV[k])*65535);
U8* buff = (U8*) &val;
//write to binary buffer
p[vert_idx++] = buff[0];
p[vert_idx++] = buff[1];
if (vert_idx > p.size())
{
LL_ERRS() << "Index out of bounds" << LL_ENDL;
}
}
}
ret["BoundingVerts"] = p;
}
return ret;
}
void LLModel::Decomposition::merge(const LLModel::Decomposition* rhs)
{
if (!rhs)
{
return;
}
if (mMeshID != rhs->mMeshID)
{
LL_ERRS() << "Attempted to merge with decomposition of some other mesh." << LL_ENDL;
}
if (mBaseHull.empty())
{ //take base hull and decomposition from rhs
mHull = rhs->mHull;
mBaseHull = rhs->mBaseHull;
mMesh = rhs->mMesh;
mBaseHullMesh = rhs->mBaseHullMesh;
}
if (mPhysicsShapeMesh.empty())
{ //take physics shape mesh from rhs
mPhysicsShapeMesh = rhs->mPhysicsShapeMesh;
}
}
bool ll_is_degenerate(const LLVector4a& a, const LLVector4a& b, const LLVector4a& c, F32 tolerance)
{
// small area check
{
LLVector4a edge1; edge1.setSub( a, b );
LLVector4a edge2; edge2.setSub( a, c );
//////////////////////////////////////////////////////////////////////////
/// Linden Modified
//////////////////////////////////////////////////////////////////////////
// If no one edge is more than 10x longer than any other edge, we weaken
// the tolerance by a factor of 1e-4f.
LLVector4a edge3; edge3.setSub( c, b );
const F32 len1sq = edge1.dot3(edge1).getF32();
const F32 len2sq = edge2.dot3(edge2).getF32();
const F32 len3sq = edge3.dot3(edge3).getF32();
bool abOK = (len1sq <= 100.f * len2sq) && (len1sq <= 100.f * len3sq);
bool acOK = (len2sq <= 100.f * len1sq) && (len1sq <= 100.f * len3sq);
bool cbOK = (len3sq <= 100.f * len1sq) && (len1sq <= 100.f * len2sq);
if ( abOK && acOK && cbOK )
{
tolerance *= 1e-4f;
}
//////////////////////////////////////////////////////////////////////////
/// End Modified
//////////////////////////////////////////////////////////////////////////
LLVector4a cross; cross.setCross3( edge1, edge2 );
LLVector4a edge1b; edge1b.setSub( b, a );
LLVector4a edge2b; edge2b.setSub( b, c );
LLVector4a crossb; crossb.setCross3( edge1b, edge2b );
if ( ( cross.dot3(cross).getF32() < tolerance ) || ( crossb.dot3(crossb).getF32() < tolerance ))
{
return true;
}
}
// point triangle distance check
{
LLVector4a Q; Q.setSub(a, b);
LLVector4a R; R.setSub(c, b);
const F32 QQ = dot3fpu(Q, Q);
const F32 RR = dot3fpu(R, R);
const F32 QR = dot3fpu(R, Q);
volatile F32 QQRR = QQ * RR;
volatile F32 QRQR = QR * QR;
F32 Det = (QQRR - QRQR);
if( Det == 0.0f )
{
return true;
}
}
return false;
}
bool validate_face(const LLVolumeFace& face)
{
for (U32 i = 0; i < face.mNumIndices; ++i)
{
if (face.mIndices[i] >= face.mNumVertices)
{
LL_WARNS("MESHSKININFO") << "Face has invalid index." << LL_ENDL;
return false;
}
}
if (face.mNumIndices % 3 != 0 || face.mNumIndices == 0)
{
LL_WARNS("MESHSKININFO") << "Face has invalid number of indices." << LL_ENDL;
return false;
}
/*const LLVector4a scale(0.5f);
for (U32 i = 0; i < face.mNumIndices; i+=3)
{
U16 idx1 = face.mIndices[i];
U16 idx2 = face.mIndices[i+1];
U16 idx3 = face.mIndices[i+2];
LLVector4a v1; v1.setMul(face.mPositions[idx1], scale);
LLVector4a v2; v2.setMul(face.mPositions[idx2], scale);
LLVector4a v3; v3.setMul(face.mPositions[idx3], scale);
if (ll_is_degenerate(v1,v2,v3))
{
llwarns << "Degenerate face found!" << LL_ENDL;
return false;
}
}*/
return true;
}
bool validate_model(const LLModel* mdl)
{
if (mdl->getNumVolumeFaces() == 0)
{
LL_WARNS("MESHSKININFO") << "Model has no faces!" << LL_ENDL;
return false;
}
for (S32 i = 0; i < mdl->getNumVolumeFaces(); ++i)
{
if (mdl->getVolumeFace(i).mNumVertices == 0)
{
LL_WARNS("MESHSKININFO") << "Face has no vertices." << LL_ENDL;
return false;
}
if (mdl->getVolumeFace(i).mNumIndices == 0)
{
LL_WARNS("MESHSKININFO") << "Face has no indices." << LL_ENDL;
return false;
}
if (!validate_face(mdl->getVolumeFace(i)))
{
return false;
}
}
return true;
}
LLModelInstance::LLModelInstance(LLSD& data)
: LLModelInstanceBase()
{
mLocalMeshID = data["mesh_id"].asInteger();
mLabel = data["label"].asString();
mTransform.setValue(data["transform"]);
for (U32 i = 0; i < data["material"].size(); ++i)
{
LLImportMaterial mat(data["material"][i]);
mMaterial[mat.mBinding] = mat;
}
}
LLSD LLModelInstance::asLLSD()
{
LLSD ret;
ret["mesh_id"] = mModel->mLocalID;
ret["label"] = mLabel;
ret["transform"] = mTransform.getValue();
U32 i = 0;
for (std::map<std::string, LLImportMaterial>::iterator iter = mMaterial.begin(); iter != mMaterial.end(); ++iter)
{
ret["material"][i++] = iter->second.asLLSD();
}
return ret;
}
LLImportMaterial::~LLImportMaterial()
{
}
LLImportMaterial::LLImportMaterial(LLSD& data)
{
mDiffuseMapFilename = data["diffuse"]["filename"].asString();
mDiffuseMapLabel = data["diffuse"]["label"].asString();
mDiffuseColor.setValue(data["diffuse"]["color"]);
mFullbright = data["fullbright"].asBoolean();
mBinding = data["binding"].asString();
}
LLSD LLImportMaterial::asLLSD()
{
LLSD ret;
ret["diffuse"]["filename"] = mDiffuseMapFilename;
ret["diffuse"]["label"] = mDiffuseMapLabel;
ret["diffuse"]["color"] = mDiffuseColor.getValue();
ret["fullbright"] = mFullbright;
ret["binding"] = mBinding;
return ret;
}
bool LLImportMaterial::operator<(const LLImportMaterial &rhs) const
{
if (mDiffuseMapID != rhs.mDiffuseMapID)
{
return mDiffuseMapID < rhs.mDiffuseMapID;
}
if (mDiffuseMapFilename != rhs.mDiffuseMapFilename)
{
return mDiffuseMapFilename < rhs.mDiffuseMapFilename;
}
if (mDiffuseMapLabel != rhs.mDiffuseMapLabel)
{
return mDiffuseMapLabel < rhs.mDiffuseMapLabel;
}
if (mDiffuseColor != rhs.mDiffuseColor)
{
return mDiffuseColor < rhs.mDiffuseColor;
}
if (mBinding != rhs.mBinding)
{
return mBinding < rhs.mBinding;
}
return mFullbright < rhs.mFullbright;
}