Skip to content
Snippets Groups Projects
Commit 0f80162d authored by Dave Houlton's avatar Dave Houlton
Browse files

SL-13768 de-obfuscate cloud/sky vertex shaders

parent 7396879e
No related branches found
No related tags found
No related merge requests found
...@@ -94,75 +94,66 @@ void main() ...@@ -94,75 +94,66 @@ void main()
vary_texcoord3 = vary_texcoord1 * 16.; vary_texcoord3 = vary_texcoord1 * 16.;
// Get relative position // Get relative position
vec3 P = position.xyz - camPosLocal.xyz + vec3(0,50,0); vec3 rel_pos = position.xyz - camPosLocal.xyz + vec3(0,50,0);
altitude_blend_factor = clamp((P.y + 512.0) / max_y, 0.0, 1.0); altitude_blend_factor = clamp((rel_pos.y + 512.0) / max_y, 0.0, 1.0);
// Set altitude // Set altitude
if (P.y > 0.) if (rel_pos.y > 0.)
{ {
P *= (max_y / P.y); rel_pos *= (max_y / rel_pos.y);
} }
else else
{ {
altitude_blend_factor = 0; // SL-11589 Fix clouds drooping below horizon altitude_blend_factor = 0; // SL-11589 Fix clouds drooping below horizon
P *= (-32000. / P.y); rel_pos *= (-32000. / rel_pos.y);
} }
// Can normalize then // Can normalize then
vec3 Pn = normalize(P); vec3 rel_pos_norm = normalize(rel_pos);
float Plen = length(P); float rel_pos_len = length(rel_pos);
// Initialize temp variables // Initialize temp variables
vec4 temp1 = vec4(0.);
vec4 temp2 = vec4(0.);
vec4 blue_weight;
vec4 haze_weight;
//vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
vec4 sunlight = sunlight_color; vec4 sunlight = sunlight_color;
vec4 light_atten; vec4 light_atten;
float dens_mul = density_multiplier; // Sunlight attenuation effect (hue and brightness) due to atmosphere
// Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes // this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (dens_mul * max_y); light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y);
// Calculate relative weights // Calculate relative weights
temp1 = abs(blue_density) + vec4(abs(haze_density)); vec4 combined_haze = abs(blue_density) + vec4(abs(haze_density));
blue_weight = blue_density / temp1; vec4 blue_weight = blue_density / combined_haze;
haze_weight = haze_density / temp1; vec4 haze_weight = haze_density / combined_haze;
// Compute sunlight from P & lightnorm (for long rays like sky) // Compute sunlight from rel_pos & lightnorm (for long rays like sky)
temp2.y = max(0., max(0., Pn.y) * 1.0 + lightnorm.y ); float off_axis = 1.0 / max(1e-6, max(0., rel_pos_norm.y) + lightnorm.y);
temp2.y = 1. / temp2.y; sunlight *= exp( - light_atten * off_axis);
sunlight *= exp( - light_atten * temp2.y);
// Distance // Distance
temp2.z = Plen * dens_mul; float density_dist = rel_pos_len * density_multiplier;
// Transparency (-> temp1) // Transparency (-> combined_haze)
// ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati // ATI Bugfix -- can't store combined_haze*density_dist in a variable because the ati
// compiler gets confused. // compiler gets confused.
temp1 = exp(-temp1 * temp2.z); combined_haze = exp(-combined_haze * density_dist);
// Compute haze glow // Compute haze glow
temp2.x = dot(Pn, lightnorm.xyz); float haze_glow = 1.0 - dot(rel_pos_norm, lightnorm.xyz);
temp2.x = 1. - temp2.x; // haze_glow is 0 at the sun and increases away from sun
// temp2.x is 0 at the sun and increases away from sun haze_glow = max(haze_glow, .001);
temp2.x = max(temp2.x, .001);
// Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
temp2.x *= glow.x; haze_glow *= glow.x;
// Higher glow.x gives dimmer glow (because next step is 1 / "angle") // Higher glow.x gives dimmer glow (because next step is 1 / "angle")
temp2.x = pow(temp2.x, glow.z); haze_glow = pow(haze_glow, glow.z);
// glow.z should be negative, so we're doing a sort of (1 / "angle") function // glow.z should be negative, so we're doing a sort of (1 / "angle") function
temp2.x *= sun_moon_glow_factor; haze_glow *= sun_moon_glow_factor;
// Add "minimum anti-solar illumination" // Add "minimum anti-solar illumination"
// For sun, add to glow. For moon, remove glow entirely. SL-13768 // For sun, add to glow. For moon, remove glow entirely. SL-13768
temp2.x = (sun_moon_glow_factor < 1.0) ? 0.0 : (temp2.x + 0.25); haze_glow = (sun_moon_glow_factor < 1.0) ? 0.0 : (haze_glow + 0.25);
// Increase ambient when there are more clouds // Increase ambient when there are more clouds
vec4 tmpAmbient = ambient_color; vec4 tmpAmbient = ambient_color;
...@@ -173,23 +164,22 @@ void main() ...@@ -173,23 +164,22 @@ void main()
// Haze color below cloud // Haze color below cloud
vec4 additiveColorBelowCloud = ( blue_horizon * blue_weight * (sunlight + tmpAmbient) vec4 additiveColorBelowCloud = ( blue_horizon * blue_weight * (sunlight + tmpAmbient)
+ (haze_horizon * haze_weight) * (sunlight * temp2.x + tmpAmbient) + (haze_horizon * haze_weight) * (sunlight * haze_glow + tmpAmbient)
); );
// CLOUDS // CLOUDS
temp2.y = max(0., lightnorm.y * 2.); off_axis = 1.0 / max(1e-6, lightnorm.y * 2.);
temp2.y = 1. / temp2.y; sunlight *= exp( - light_atten * off_axis);
sunlight *= exp( - light_atten * temp2.y);
// Cloud color out // Cloud color out
vary_CloudColorSun = (sunlight * temp2.x) * cloud_color; vary_CloudColorSun = (sunlight * haze_glow) * cloud_color;
vary_CloudColorAmbient = tmpAmbient * cloud_color; vary_CloudColorAmbient = tmpAmbient * cloud_color;
// Attenuate cloud color by atmosphere // Attenuate cloud color by atmosphere
temp1 = sqrt(temp1); //less atmos opacity (more transparency) below clouds combined_haze = sqrt(combined_haze); //less atmos opacity (more transparency) below clouds
vary_CloudColorSun *= temp1; vary_CloudColorSun *= combined_haze;
vary_CloudColorAmbient *= temp1; vary_CloudColorAmbient *= combined_haze;
vec4 oHazeColorBelowCloud = additiveColorBelowCloud * (1. - temp1); vec4 oHazeColorBelowCloud = additiveColorBelowCloud * (1. - combined_haze);
// Make a nice cloud density based on the cloud_shadow value that was passed in. // Make a nice cloud density based on the cloud_shadow value that was passed in.
vary_CloudDensity = 2. * (cloud_shadow - 0.25); vary_CloudDensity = 2. * (cloud_shadow - 0.25);
......
...@@ -70,77 +70,69 @@ void main() ...@@ -70,77 +70,69 @@ void main()
gl_Position = pos; gl_Position = pos;
// Get relative position // Get relative position
vec3 P = position.xyz - camPosLocal.xyz + vec3(0,50,0); vec3 rel_pos = position.xyz - camPosLocal.xyz + vec3(0,50,0);
// Set altitude // Set altitude
if (P.y > 0.) if (rel_pos.y > 0.)
{ {
P *= (max_y / P.y); rel_pos *= (max_y / rel_pos.y);
} }
else else
{ {
P *= (-32000. / P.y); rel_pos *= (-32000. / rel_pos.y);
} }
// Can normalize then // Can normalize then
vec3 Pn = normalize(P); vec3 rel_pos_norm = normalize(rel_pos);
float Plen = length(P); float rel_pos_len = length(rel_pos);
// Initialize temp variables // Initialize temp variables
vec4 temp1 = vec4(0.);
vec4 temp2 = vec4(0.);
vec4 blue_weight;
vec4 haze_weight;
vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color; vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
vec4 light_atten; vec4 light_atten;
float dens_mul = density_multiplier;
// Sunlight attenuation effect (hue and brightness) due to atmosphere // Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes // this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (dens_mul * max_y); light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y);
// Calculate relative weights // Calculate relative weights
temp1 = abs(blue_density) + vec4(abs(haze_density)); vec4 combined_haze = abs(blue_density) + vec4(abs(haze_density));
blue_weight = blue_density / temp1; vec4 blue_weight = blue_density / combined_haze;
haze_weight = haze_density / temp1; vec4 haze_weight = haze_density / combined_haze;
// Compute sunlight from P & lightnorm (for long rays like sky) // Compute sunlight from rel_pos & lightnorm (for long rays like sky)
temp2.y = max(0., max(0., Pn.y) * 1.0 + lightnorm.y ); float off_axis = 1.0 / max(1e-6, max(0., rel_pos_norm.y) + lightnorm.y);
temp2.y = 1. / temp2.y; sunlight *= exp( - light_atten * off_axis);
sunlight *= exp( - light_atten * temp2.y);
// Distance // Distance
temp2.z = Plen * dens_mul; float density_dist = rel_pos_len * density_multiplier;
// Transparency (-> temp1) // Transparency (-> combined_haze)
// ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati // ATI Bugfix -- can't store combined_haze*density_dist in a variable because the ati
// compiler gets confused. // compiler gets confused.
temp1 = exp(-temp1 * temp2.z); combined_haze = exp(-combined_haze * density_dist);
// Compute haze glow // Compute haze glow
temp2.x = dot(Pn, lightnorm.xyz); float haze_glow = 1.0 - dot(rel_pos_norm, lightnorm.xyz);
temp2.x = 1. - temp2.x; // haze_glow is 0 at the sun and increases away from sun
// temp2.x is 0 at the sun and increases away from sun haze_glow = max(haze_glow, .001);
temp2.x = max(temp2.x, .001);
// Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
temp2.x *= glow.x; haze_glow *= glow.x;
// Higher glow.x gives dimmer glow (because next step is 1 / "angle") // Higher glow.x gives dimmer glow (because next step is 1 / "angle")
temp2.x = pow(temp2.x, glow.z); haze_glow = pow(haze_glow, glow.z);
// glow.z should be negative, so we're doing a sort of (1 / "angle") function // glow.z should be negative, so we're doing a sort of (1 / "angle") function
// Add "minimum anti-solar illumination" // Add "minimum anti-solar illumination"
// For sun, add to glow. For moon, remove glow entirely. SL-13768 // For sun, add to glow. For moon, remove glow entirely. SL-13768
temp2.x = (sun_moon_glow_factor < 1.0) ? 0.0 : (temp2.x + 0.25); haze_glow = (sun_moon_glow_factor < 1.0) ? 0.0 : (haze_glow + 0.25);
vec4 color = ( blue_horizon * blue_weight * (sunlight + ambient_color) vec4 color = ( blue_horizon * blue_weight * (sunlight + ambient_color)
+ (haze_horizon * haze_weight) * (sunlight * temp2.x + ambient_color) + (haze_horizon * haze_weight) * (sunlight * haze_glow + ambient_color)
); );
// Final atmosphere additive // Final atmosphere additive
color *= (1. - temp1); color *= (1. - combined_haze);
// Increase ambient when there are more clouds // Increase ambient when there are more clouds
vec4 tmpAmbient = ambient_color; vec4 tmpAmbient = ambient_color;
...@@ -151,14 +143,14 @@ void main() ...@@ -151,14 +143,14 @@ void main()
// Haze color below cloud // Haze color below cloud
vec4 additiveColorBelowCloud = ( blue_horizon * blue_weight * (sunlight + tmpAmbient) vec4 additiveColorBelowCloud = ( blue_horizon * blue_weight * (sunlight + tmpAmbient)
+ (haze_horizon * haze_weight) * (sunlight * temp2.x + tmpAmbient) + (haze_horizon * haze_weight) * (sunlight * haze_glow + tmpAmbient)
); );
// Attenuate cloud color by atmosphere // Attenuate cloud color by atmosphere
temp1 = sqrt(temp1); //less atmos opacity (more transparency) below clouds combined_haze = sqrt(combined_haze); //less atmos opacity (more transparency) below clouds
// At horizon, blend high altitude sky color towards the darker color below the clouds // At horizon, blend high altitude sky color towards the darker color below the clouds
color += (additiveColorBelowCloud - color) * (1. - sqrt(temp1)); color += (additiveColorBelowCloud - color) * (1. - sqrt(combined_haze));
// Haze color above cloud // Haze color above cloud
vary_HazeColor = color; vary_HazeColor = color;
......
...@@ -94,75 +94,66 @@ void main() ...@@ -94,75 +94,66 @@ void main()
vary_texcoord3 = vary_texcoord1 * 16.; vary_texcoord3 = vary_texcoord1 * 16.;
// Get relative position // Get relative position
vec3 P = position.xyz - camPosLocal.xyz + vec3(0,50,0); vec3 rel_pos = position.xyz - camPosLocal.xyz + vec3(0,50,0);
// fade clouds beyond a certain point so the bottom of the sky dome doesn't look silly at high altitude // fade clouds beyond a certain point so the bottom of the sky dome doesn't look silly at high altitude
altitude_blend_factor = clamp((P.y + 512.0) / max_y, 0.0, 1.0); altitude_blend_factor = clamp((rel_pos.y + 512.0) / max_y, 0.0, 1.0);
// Set altitude // Set altitude
if (P.y > 0.) if (rel_pos.y > 0.)
{ {
P *= (max_y / P.y); rel_pos *= (max_y / rel_pos.y);
} }
else else
{ {
P *= (-32000. / P.y); rel_pos *= (-32000. / rel_pos.y);
} }
// Can normalize then // Can normalize then
vec3 Pn = normalize(P); vec3 rel_pos_norm = normalize(rel_pos);
float Plen = length(P); float rel_pos_len = length(rel_pos);
// Initialize temp variables // Initialize temp variables
vec4 temp1 = vec4(0.);
vec4 temp2 = vec4(0.);
vec4 blue_weight;
vec4 haze_weight;
//vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
vec4 sunlight = sunlight_color; vec4 sunlight = sunlight_color;
vec4 light_atten; vec4 light_atten;
float dens_mul = density_multiplier;
// Sunlight attenuation effect (hue and brightness) due to atmosphere // Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes // this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (dens_mul * max_y); light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y);
// Calculate relative weights // Calculate relative weights
temp1 = abs(blue_density) + vec4(abs(haze_density)); vec4 combined_haze = abs(blue_density) + vec4(abs(haze_density));
blue_weight = blue_density / temp1; vec4 blue_weight = blue_density / combined_haze;
haze_weight = haze_density / temp1; vec4 haze_weight = haze_density / combined_haze;
// Compute sunlight from P & lightnorm (for long rays like sky) // Compute sunlight from rel_pos & lightnorm (for long rays like sky)
temp2.y = max(0., max(0., Pn.y) * 1.0 + lightnorm.y ); float off_axis = 1.0 / max(1e-6, max(0., rel_pos_norm.y) + lightnorm.y);
temp2.y = 1. / temp2.y; sunlight *= exp( - light_atten * off_axis);
sunlight *= exp( - light_atten * temp2.y);
// Distance // Distance
temp2.z = Plen * dens_mul; float density_dist = rel_pos_len * density_multiplier;
// Transparency (-> temp1) // Transparency (-> combined_haze)
// ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati // ATI Bugfix -- can't store combined_haze*density_dist in a variable because the ati
// compiler gets confused. // compiler gets confused.
temp1 = exp(-temp1 * temp2.z); combined_haze = exp(-combined_haze * density_dist);
// Compute haze glow // Compute haze glow
temp2.x = dot(Pn, lightnorm.xyz); float haze_glow = 1.0 - dot(rel_pos_norm, lightnorm.xyz);
temp2.x = 1. - temp2.x; // haze_glow is 0 at the sun and increases away from sun
// temp2.x is 0 at the sun and increases away from sun haze_glow = max(haze_glow, .001);
temp2.x = max(temp2.x, .001);
// Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
temp2.x *= glow.x; haze_glow *= glow.x;
// Higher glow.x gives dimmer glow (because next step is 1 / "angle") // Higher glow.x gives dimmer glow (because next step is 1 / "angle")
temp2.x = pow(temp2.x, glow.z); haze_glow = pow(haze_glow, glow.z);
// glow.z should be negative, so we're doing a sort of (1 / "angle") function // glow.z should be negative, so we're doing a sort of (1 / "angle") function
temp2.x *= sun_moon_glow_factor; haze_glow *= sun_moon_glow_factor;
// Add "minimum anti-solar illumination" // Add "minimum anti-solar illumination"
// For sun, add to glow. For moon, remove glow entirely. SL-13768 // For sun, add to glow. For moon, remove glow entirely. SL-13768
temp2.x = (sun_moon_glow_factor < 1.0) ? 0.0 : (temp2.x + 0.25); haze_glow = (sun_moon_glow_factor < 1.0) ? 0.0 : (haze_glow + 0.25);
// Increase ambient when there are more clouds // Increase ambient when there are more clouds
vec4 tmpAmbient = ambient_color; vec4 tmpAmbient = ambient_color;
...@@ -173,23 +164,22 @@ void main() ...@@ -173,23 +164,22 @@ void main()
// Haze color below cloud // Haze color below cloud
vec4 additiveColorBelowCloud = ( blue_horizon * blue_weight * (sunlight + tmpAmbient) vec4 additiveColorBelowCloud = ( blue_horizon * blue_weight * (sunlight + tmpAmbient)
+ (haze_horizon * haze_weight) * (sunlight * temp2.x + tmpAmbient) + (haze_horizon * haze_weight) * (sunlight * haze_glow + tmpAmbient)
); );
// CLOUDS // CLOUDS
temp2.y = max(0., lightnorm.y * 2.); off_axis = 1.0 / max(1e-6, lightnorm.y * 2.);
temp2.y = 1. / temp2.y; sunlight *= exp( - light_atten * off_axis);
sunlight *= exp( - light_atten * temp2.y);
// Cloud color out // Cloud color out
vary_CloudColorSun = (sunlight * temp2.x) * cloud_color; vary_CloudColorSun = (sunlight * haze_glow) * cloud_color;
vary_CloudColorAmbient = tmpAmbient * cloud_color; vary_CloudColorAmbient = tmpAmbient * cloud_color;
// Attenuate cloud color by atmosphere // Attenuate cloud color by atmosphere
temp1 = sqrt(temp1); //less atmos opacity (more transparency) below clouds combined_haze = sqrt(combined_haze); //less atmos opacity (more transparency) below clouds
vary_CloudColorSun *= temp1; vary_CloudColorSun *= combined_haze;
vary_CloudColorAmbient *= temp1; vary_CloudColorAmbient *= combined_haze;
vec4 oHazeColorBelowCloud = additiveColorBelowCloud * (1. - temp1); vec4 oHazeColorBelowCloud = additiveColorBelowCloud * (1. - combined_haze);
// Make a nice cloud density based on the cloud_shadow value that was passed in. // Make a nice cloud density based on the cloud_shadow value that was passed in.
vary_CloudDensity = 2. * (cloud_shadow - 0.25); vary_CloudDensity = 2. * (cloud_shadow - 0.25);
......
...@@ -66,77 +66,69 @@ void main() ...@@ -66,77 +66,69 @@ void main()
gl_Position = pos; gl_Position = pos;
// Get relative position // Get relative position
vec3 P = position.xyz - camPosLocal.xyz + vec3(0,50,0); vec3 rel_pos = position.xyz - camPosLocal.xyz + vec3(0,50,0);
// Set altitude // Set altitude
if (P.y > 0.) if (rel_pos.y > 0.)
{ {
P *= (max_y / P.y); rel_pos *= (max_y / rel_pos.y);
} }
else else
{ {
P *= (-32000. / P.y); rel_pos *= (-32000. / rel_pos.y);
} }
// Can normalize then // Can normalize then
vec3 Pn = normalize(P); vec3 rel_pos_norm = normalize(rel_pos);
float Plen = length(P); float rel_pos_len = length(rel_pos);
// Initialize temp variables // Initialize temp variables
vec4 temp1 = vec4(0.);
vec4 temp2 = vec4(0.);
vec4 blue_weight;
vec4 haze_weight;
vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color; vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
vec4 light_atten; vec4 light_atten;
float dens_mul = density_multiplier;
// Sunlight attenuation effect (hue and brightness) due to atmosphere // Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes // this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (dens_mul * max_y); light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y);
// Calculate relative weights // Calculate relative weights
temp1 = abs(blue_density) + vec4(abs(haze_density)); vec4 combined_haze = abs(blue_density) + vec4(abs(haze_density));
blue_weight = blue_density / temp1; vec4 blue_weight = blue_density / combined_haze;
haze_weight = haze_density / temp1; vec4 haze_weight = haze_density / combined_haze;
// Compute sunlight from P & lightnorm (for long rays like sky) // Compute sunlight from rel_pos & lightnorm (for long rays like sky)
temp2.y = max(0., max(0., Pn.y) * 1.0 + lightnorm.y ); float off_axis = 1.0 / max(1e-6, max(0., rel_pos_norm.y) + lightnorm.y);
temp2.y = 1. / temp2.y; sunlight *= exp( - light_atten * off_axis);
sunlight *= exp( - light_atten * temp2.y);
// Distance // Distance
temp2.z = Plen * dens_mul; float density_dist = rel_pos_len * density_multiplier;
// Transparency (-> temp1) // Transparency (-> combined_haze)
// ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati // ATI Bugfix -- can't store combined_haze*density_dist in a variable because the ati
// compiler gets confused. // compiler gets confused.
temp1 = exp(-temp1 * temp2.z); combined_haze = exp(-combined_haze * density_dist);
// Compute haze glow // Compute haze glow
temp2.x = dot(Pn, lightnorm.xyz); float haze_glow = 1.0 - dot(rel_pos_norm, lightnorm.xyz);
temp2.x = 1. - temp2.x; // haze_glow is 0 at the sun and increases away from sun
// temp2.x is 0 at the sun and increases away from sun haze_glow = max(haze_glow, .001);
temp2.x = max(temp2.x, .001);
// Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
temp2.x *= glow.x; haze_glow *= glow.x;
// Higher glow.x gives dimmer glow (because next step is 1 / "angle") // Higher glow.x gives dimmer glow (because next step is 1 / "angle")
temp2.x = pow(temp2.x, glow.z); haze_glow = pow(haze_glow, glow.z);
// glow.z should be negative, so we're doing a sort of (1 / "angle") function // glow.z should be negative, so we're doing a sort of (1 / "angle") function
// Add "minimum anti-solar illumination" // Add "minimum anti-solar illumination"
// For sun, add to glow. For moon, remove glow entirely. SL-13768 // For sun, add to glow. For moon, remove glow entirely. SL-13768
temp2.x = (sun_moon_glow_factor < 1.0) ? 0.0 : (temp2.x + 0.25); haze_glow = (sun_moon_glow_factor < 1.0) ? 0.0 : (haze_glow + 0.25);
vec4 color = ( blue_horizon * blue_weight * (sunlight + ambient_color) vec4 color = ( blue_horizon * blue_weight * (sunlight + ambient_color)
+ (haze_horizon * haze_weight) * (sunlight * temp2.x + ambient_color) + (haze_horizon * haze_weight) * (sunlight * haze_glow + ambient_color)
); );
// Final atmosphere additive // Final atmosphere additive
color *= (1. - temp1); color *= (1. - combined_haze);
// Increase ambient when there are more clouds // Increase ambient when there are more clouds
vec4 tmpAmbient = ambient_color; vec4 tmpAmbient = ambient_color;
...@@ -147,14 +139,14 @@ void main() ...@@ -147,14 +139,14 @@ void main()
// Haze color below cloud // Haze color below cloud
vec4 additiveColorBelowCloud = ( blue_horizon * blue_weight * (sunlight + tmpAmbient) vec4 additiveColorBelowCloud = ( blue_horizon * blue_weight * (sunlight + tmpAmbient)
+ (haze_horizon * haze_weight) * (sunlight * temp2.x + tmpAmbient) + (haze_horizon * haze_weight) * (sunlight * haze_glow + tmpAmbient)
); );
// Attenuate cloud color by atmosphere // Attenuate cloud color by atmosphere
temp1 = sqrt(temp1); //less atmos opacity (more transparency) below clouds combined_haze = sqrt(combined_haze); //less atmos opacity (more transparency) below clouds
// At horizon, blend high altitude sky color towards the darker color below the clouds // At horizon, blend high altitude sky color towards the darker color below the clouds
color += (additiveColorBelowCloud - color) * (1. - sqrt(temp1)); color += (additiveColorBelowCloud - color) * (1. - sqrt(combined_haze));
// Haze color above cloud // Haze color above cloud
vary_HazeColor = color; vary_HazeColor = color;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment