Newer
Older
/**
* @file llreflectionmapmanager.cpp
* @brief LLReflectionMapManager class implementation
*
* $LicenseInfo:firstyear=2022&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2022, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "llreflectionmapmanager.h"
#include "llviewercamera.h"
#include "llspatialpartition.h"
#include "llviewerregion.h"
#include "pipeline.h"
#include "llviewershadermgr.h"
#include "llviewercontrol.h"
#include "llenvironment.h"
David Parks
committed
#include "llstartup.h"
extern BOOL gCubeSnapshot;
extern BOOL gTeleportDisplay;
David Parks
committed
// get the next highest power of two of v (or v if v is already a power of two)
//defined in llvertexbuffer.cpp
extern U32 nhpo2(U32 v);
David Parks
committed
static void touch_default_probe(LLReflectionMap* probe)
{
LLVector3 origin = LLViewerCamera::getInstance()->getOrigin();
origin.mV[2] += 64.f;
probe->mOrigin.load3(origin.mV);
}
LLReflectionMapManager::LLReflectionMapManager()
{
initCubeFree();
}
void LLReflectionMapManager::initCubeFree()
{
David Parks
committed
for (int i = 1; i < LL_MAX_REFLECTION_PROBE_COUNT; ++i)
{
mCubeFree[i] = true;
}
David Parks
committed
// cube index 0 is reserved for the fallback probe
mCubeFree[0] = false;
}
struct CompareProbeDistance
{
bool operator()(const LLPointer<LLReflectionMap>& lhs, const LLPointer<LLReflectionMap>& rhs)
{
return lhs->mDistance < rhs->mDistance;
}
};
static F32 update_score(LLReflectionMap* p)
{
return gFrameTimeSeconds - p->mLastUpdateTime - p->mDistance*0.1f;
}
// return true if a is higher priority for an update than b
static bool check_priority(LLReflectionMap* a, LLReflectionMap* b)
{
if (!a->mComplete && !b->mComplete)
{ //neither probe is complete, use distance
return a->mDistance < b->mDistance;
}
else if (a->mComplete && b->mComplete)
{ //both probes are complete, use update_score metric
return update_score(a) > update_score(b);
}
// one of these probes is not complete, if b is complete, a is higher priority
return b->mComplete;
}
// helper class to seed octree with probes
void LLReflectionMapManager::update()
{
David Parks
committed
if (!LLPipeline::sReflectionProbesEnabled || gTeleportDisplay || LLStartUp::getStartupState() < STATE_PRECACHE)
{
return;
}
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
llassert(!gCubeSnapshot); // assert a snapshot is not in progress
if (LLAppViewer::instance()->logoutRequestSent())
{
return;
}
initReflectionMaps();
if (!mRenderTarget.isComplete())
{
U32 targetRes = mProbeResolution * 4; // super sample
David Parks
committed
mRenderTarget.allocate(targetRes, targetRes, color_fmt, true);
}
if (mMipChain.empty())
{
David Parks
committed
U32 res = mProbeResolution;
U32 count = log2((F32)res) + 0.5f;
mMipChain.resize(count);
for (int i = 0; i < count; ++i)
{
mMipChain[i].allocate(res, res, GL_RGB16F);
res /= 2;
}
}
David Parks
committed
if (mDefaultProbe.isNull())
{
mDefaultProbe = addProbe();
mDefaultProbe->mDistance = -4096.f; // hack to make sure the default probe is always first in sort order
mDefaultProbe->mRadius = 4096.f;
David Parks
committed
touch_default_probe(mDefaultProbe);
David Parks
committed
}
LLVector4a camera_pos;
camera_pos.load3(LLViewerCamera::instance().getOrigin().mV);
// process kill list
David Parks
committed
for (auto& probe : mKillList)
{
Brad Kittenbrink
committed
auto const & iter = std::find(mProbes.begin(), mProbes.end(), probe);
David Parks
committed
if (iter != mProbes.end())
David Parks
committed
deleteProbe(iter - mProbes.begin());
}
mKillList.clear();
// process create list
for (auto& probe : mCreateList)
{
mProbes.push_back(probe);
}
mCreateList.clear();
if (mProbes.empty())
{
return;
}
bool did_update = false;
static LLCachedControl<S32> sDetail(gSavedSettings, "RenderReflectionProbeDetail", -1);
bool realtime = sDetail >= (S32)LLReflectionMapManager::DetailLevel::REALTIME;
LLReflectionMap* closestDynamic = nullptr;
LLReflectionMap* oldestProbe = nullptr;
David Parks
committed
LLReflectionMap* oldestOccluded = nullptr;
if (mUpdatingProbe != nullptr)
{
did_update = true;
doProbeUpdate();
}
David Parks
committed
//LL_INFOS() << mProbes.size() << LL_ENDL;
for (int i = 0; i < mProbes.size(); ++i)
{
LLReflectionMap* probe = mProbes[i];
if (probe->getNumRefs() == 1)
{ // no references held outside manager, delete this probe
deleteProbe(i);
--i;
continue;
}
probe->mProbeIndex = i;
LLVector4a d;
David Parks
committed
if (probe != mDefaultProbe)
{
d.setSub(camera_pos, probe->mOrigin);
probe->mDistance = d.getLength3().getF32() - probe->mRadius;
}
else if (probe->mComplete)
{
// make default probe have a distance of 64m for the purposes of prioritization (if it's already been generated once)
probe->mDistance = 64.f;
}
if (probe->mComplete)
{
probe->autoAdjustOrigin();
probe->mFadeIn = llmin((F32) (probe->mFadeIn + gFrameIntervalSeconds), 1.f);
}
if (probe->mOccluded && probe->mComplete)
David Parks
committed
if (oldestOccluded == nullptr)
{
oldestOccluded = probe;
}
else if (probe->mLastUpdateTime < oldestOccluded->mLastUpdateTime)
{
oldestOccluded = probe;
}
}
else
{
if (!did_update &&
i < mReflectionProbeCount &&
(oldestProbe == nullptr ||
check_priority(probe, oldestProbe)))
David Parks
committed
{
oldestProbe = probe;
}
if (realtime &&
closestDynamic == nullptr &&
David Parks
committed
probe->mCubeIndex != -1 &&
probe->getIsDynamic())
{
closestDynamic = probe;
}
}
if (realtime && closestDynamic != nullptr)
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmu - realtime");
// update the closest dynamic probe realtime
// should do a full irradiance pass on "odd" frames and a radiance pass on "even" frames
closestDynamic->autoAdjustOrigin();
// store and override the value of "isRadiancePass" -- parts of the render pipe rely on "isRadiancePass" to set
// lighting values etc
bool radiance_pass = isRadiancePass();
mRadiancePass = mRealtimeRadiancePass;
for (U32 i = 0; i < 6; ++i)
{
updateProbeFace(closestDynamic, i);
}
mRealtimeRadiancePass = !mRealtimeRadiancePass;
// restore "isRadiancePass"
mRadiancePass = radiance_pass;
}
// switch to updating the next oldest probe
if (!did_update && oldestProbe != nullptr)
{
LLReflectionMap* probe = oldestProbe;
if (probe->mCubeIndex == -1)
{
probe->mCubeArray = mTexture;
David Parks
committed
probe->mCubeIndex = probe == mDefaultProbe ? 0 : allocateCubeIndex();
}
probe->autoAdjustOrigin();
mUpdatingProbe = probe;
doProbeUpdate();
David Parks
committed
if (oldestOccluded)
{
// as far as this occluded probe is concerned, an origin/radius update is as good as a full update
oldestOccluded->autoAdjustOrigin();
oldestOccluded->mLastUpdateTime = gFrameTimeSeconds;
}
// update distance to camera for all probes
mDefaultProbe->mDistance = -4096.f; // make default probe always end up at index 0
std::sort(mProbes.begin(), mProbes.end(), CompareProbeDistance());
}
LLReflectionMap* LLReflectionMapManager::addProbe(LLSpatialGroup* group)
{
LLReflectionMap* probe = new LLReflectionMap();
probe->mGroup = group;
David Parks
committed
if (group)
{
probe->mOrigin = group->getOctreeNode()->getCenter();
}
if (gCubeSnapshot)
{ //snapshot is in progress, mProbes is being iterated over, defer insertion until next update
mCreateList.push_back(probe);
}
else
{
mProbes.push_back(probe);
}
return probe;
}
void LLReflectionMapManager::getReflectionMaps(std::vector<LLReflectionMap*>& maps)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
U32 count = 0;
U32 lastIdx = 0;
for (U32 i = 0; count < maps.size() && i < mProbes.size(); ++i)
{
mProbes[i]->mLastBindTime = gFrameTimeSeconds; // something wants to use this probe, indicate it's been requested
if (mProbes[i]->mCubeIndex != -1)
{
if (!mProbes[i]->mOccluded && mProbes[i]->mComplete)
David Parks
committed
{
mProbes[i]->mProbeIndex = count;
maps[count++] = mProbes[i];
}
}
else
{
mProbes[i]->mProbeIndex = -1;
}
lastIdx = i;
}
// set remaining probe indices to -1
for (U32 i = lastIdx+1; i < mProbes.size(); ++i)
{
mProbes[i]->mProbeIndex = -1;
}
// null terminate list
if (count < maps.size())
{
maps[count] = nullptr;
}
}
LLReflectionMap* LLReflectionMapManager::registerSpatialGroup(LLSpatialGroup* group)
{
David Parks
committed
static LLCachedControl<S32> automatic_probes(gSavedSettings, "RenderAutomaticReflectionProbes", 2);
if (automatic_probes > 1)
David Parks
committed
if (group->getSpatialPartition()->mPartitionType == LLViewerRegion::PARTITION_VOLUME)
David Parks
committed
OctreeNode* node = group->getOctreeNode();
F32 size = node->getSize().getF32ptr()[0];
if (size >= 15.f && size <= 17.f)
{
return addProbe(group);
}
David Parks
committed
return nullptr;
}
LLReflectionMap* LLReflectionMapManager::registerViewerObject(LLViewerObject* vobj)
{
llassert(vobj != nullptr);
LLReflectionMap* probe = new LLReflectionMap();
probe->mViewerObject = vobj;
probe->mOrigin.load3(vobj->getPositionAgent().mV);
if (gCubeSnapshot)
{ //snapshot is in progress, mProbes is being iterated over, defer insertion until next update
mCreateList.push_back(probe);
}
else
{
mProbes.push_back(probe);
}
return probe;
}
S32 LLReflectionMapManager::allocateCubeIndex()
{
for (int i = 0; i < mReflectionProbeCount; ++i)
{
if (mCubeFree[i])
{
mCubeFree[i] = false;
return i;
}
}
// no cubemaps free, steal one from the back of the probe list
for (int i = mProbes.size() - 1; i >= mReflectionProbeCount; --i)
{
if (mProbes[i]->mCubeIndex != -1)
{
S32 ret = mProbes[i]->mCubeIndex;
mProbes[i]->mCubeIndex = -1;
David Parks
committed
mProbes[i]->mCubeArray = nullptr;
mProbes[i]->mComplete = false;
return ret;
}
}
llassert(false); // should never fail to allocate, something is probably wrong with mCubeFree
return -1;
}
void LLReflectionMapManager::deleteProbe(U32 i)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
LLReflectionMap* probe = mProbes[i];
David Parks
committed
llassert(probe != mDefaultProbe);
if (probe->mCubeIndex != -1)
{ // mark the cube index used by this probe as being free
mCubeFree[probe->mCubeIndex] = true;
}
if (mUpdatingProbe == probe)
{
mUpdatingProbe = nullptr;
mUpdatingFace = 0;
}
// remove from any Neighbors lists
for (auto& other : probe->mNeighbors)
{
Brad Kittenbrink
committed
auto const & iter = std::find(other->mNeighbors.begin(), other->mNeighbors.end(), probe);
llassert(iter != other->mNeighbors.end());
other->mNeighbors.erase(iter);
}
mProbes.erase(mProbes.begin() + i);
}
void LLReflectionMapManager::doProbeUpdate()
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
llassert(mUpdatingProbe != nullptr);
updateProbeFace(mUpdatingProbe, mUpdatingFace);
if (++mUpdatingFace == 6)
{
updateNeighbors(mUpdatingProbe);
mUpdatingFace = 0;
if (isRadiancePass())
David Parks
committed
{
mUpdatingProbe->mComplete = true;
David Parks
committed
mUpdatingProbe = nullptr;
mRadiancePass = false;
}
else
{
mRadiancePass = true;
}
}
}
David Parks
committed
// Do the reflection map update render passes.
// For every 12 calls of this function, one complete reflection probe radiance map and irradiance map is generated
// First six passes render the scene with direct lighting only into a scratch space cube map at the end of the cube map array and generate
// a simple mip chain (not convolution filter).
// At the end of these passes, an irradiance map is generated for this probe and placed into the irradiance cube map array at the index for this probe
// The next six passes render the scene with both radiance and irradiance into the same scratch space cube map and generate a simple mip chain.
// At the end of these passes, a radiance map is generated for this probe and placed into the radiance cube map array at the index for this probe.
// In effect this simulates single-bounce lighting.
void LLReflectionMapManager::updateProbeFace(LLReflectionMap* probe, U32 face)
{
// hacky hot-swap of camera specific render targets
David Parks
committed
gPipeline.mRT = &gPipeline.mAuxillaryRT;
David Parks
committed
David Parks
committed
mLightScale = 1.f;
static LLCachedControl<F32> max_local_light_ambiance(gSavedSettings, "RenderReflectionProbeMaxLocalLightAmbiance", 8.f);
if (!isRadiancePass() && probe->getAmbiance() > max_local_light_ambiance)
{
mLightScale = max_local_light_ambiance / probe->getAmbiance();
}
David Parks
committed
if (probe == mDefaultProbe)
{
touch_default_probe(probe);
gPipeline.pushRenderTypeMask();
//only render sky, water, terrain, and clouds
gPipeline.andRenderTypeMask(LLPipeline::RENDER_TYPE_SKY, LLPipeline::RENDER_TYPE_WL_SKY,
David Parks
committed
LLPipeline::RENDER_TYPE_WATER, LLPipeline::RENDER_TYPE_VOIDWATER, LLPipeline::RENDER_TYPE_CLOUDS, LLPipeline::RENDER_TYPE_TERRAIN, LLPipeline::END_RENDER_TYPES);
David Parks
committed
probe->update(mRenderTarget.getWidth(), face);
gPipeline.popRenderTypeMask();
}
else
{
probe->update(mRenderTarget.getWidth(), face);
}
David Parks
committed
gPipeline.mRT = &gPipeline.mMainRT;
David Parks
committed
S32 sourceIdx = mReflectionProbeCount;
if (probe != mUpdatingProbe)
{ // this is the "realtime" probe that's updating every frame, use the secondary scratch space channel
David Parks
committed
sourceIdx += 1;
gGL.setColorMask(true, true);
LLGLDepthTest depth(GL_FALSE, GL_FALSE);
LLGLDisable cull(GL_CULL_FACE);
LLGLDisable blend(GL_BLEND);
// downsample to placeholder map
{
gGL.matrixMode(gGL.MM_MODELVIEW);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(gGL.MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.flush();
David Parks
committed
U32 res = mProbeResolution * 2;
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
static LLStaticHashedString resScale("resScale");
static LLStaticHashedString direction("direction");
static LLStaticHashedString znear("znear");
static LLStaticHashedString zfar("zfar");
LLRenderTarget* screen_rt = &gPipeline.mAuxillaryRT.screen;
// perform a gaussian blur on the super sampled render before downsampling
{
gGaussianProgram.bind();
gGaussianProgram.uniform1f(resScale, 1.f / (mProbeResolution * 2));
S32 diffuseChannel = gGaussianProgram.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, LLTexUnit::TT_TEXTURE);
// horizontal
gGaussianProgram.uniform2f(direction, 1.f, 0.f);
gGL.getTexUnit(diffuseChannel)->bind(screen_rt);
mRenderTarget.bindTarget();
gPipeline.mScreenTriangleVB->setBuffer();
gPipeline.mScreenTriangleVB->drawArrays(LLRender::TRIANGLES, 0, 3);
mRenderTarget.flush();
// vertical
gGaussianProgram.uniform2f(direction, 0.f, 1.f);
gGL.getTexUnit(diffuseChannel)->bind(&mRenderTarget);
screen_rt->bindTarget();
gPipeline.mScreenTriangleVB->setBuffer();
gPipeline.mScreenTriangleVB->drawArrays(LLRender::TRIANGLES, 0, 3);
screen_rt->flush();
}
David Parks
committed
S32 mips = log2((F32)mProbeResolution) + 0.5f;
gReflectionMipProgram.bind();
S32 diffuseChannel = gReflectionMipProgram.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, LLTexUnit::TT_TEXTURE);
for (int i = 0; i < mMipChain.size(); ++i)
LL_PROFILE_GPU_ZONE("probe mip");
mMipChain[i].bindTarget();
if (i == 0)
{
gGL.getTexUnit(diffuseChannel)->bind(screen_rt);
gGL.getTexUnit(diffuseChannel)->bind(&(mMipChain[i - 1]));
David Parks
committed
gReflectionMipProgram.uniform1f(resScale, 1.f/(mProbeResolution*2));
David Parks
committed
gPipeline.mScreenTriangleVB->setBuffer();
gPipeline.mScreenTriangleVB->drawArrays(LLRender::TRIANGLES, 0, 3);
res /= 2;
S32 mip = i - (mMipChain.size() - mips);
if (mip >= 0)
{
LL_PROFILE_GPU_ZONE("probe mip copy");
mTexture->bind(0);
//glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, probe->mCubeIndex * 6 + face, 0, 0, res, res);
David Parks
committed
glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, sourceIdx * 6 + face, 0, 0, res, res);
David Parks
committed
//if (i == 0)
//{
//glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, probe->mCubeIndex * 6 + face, 0, 0, res, res);
//}
mTexture->unbind();
}
mMipChain[i].flush();
}
gGL.popMatrix();
gGL.matrixMode(gGL.MM_MODELVIEW);
gGL.popMatrix();
gGL.getTexUnit(diffuseChannel)->unbind(LLTexUnit::TT_TEXTURE);
gReflectionMipProgram.unbind();
}
if (face == 5)
{
David Parks
committed
mMipChain[0].bindTarget();
David Parks
committed
static LLStaticHashedString sSourceIdx("sourceIdx");
if (isRadiancePass())
David Parks
committed
//generate radiance map (even if this is not the irradiance map, we need the mip chain for the irradiance map)
gRadianceGenProgram.bind();
mVertexBuffer->setBuffer();
David Parks
committed
David Parks
committed
S32 channel = gRadianceGenProgram.enableTexture(LLShaderMgr::REFLECTION_PROBES, LLTexUnit::TT_CUBE_MAP_ARRAY);
mTexture->bind(channel);
gRadianceGenProgram.uniform1i(sSourceIdx, sourceIdx);
gRadianceGenProgram.uniform1f(LLShaderMgr::REFLECTION_PROBE_MAX_LOD, mMaxProbeLOD);
David Parks
committed
David Parks
committed
U32 res = mMipChain[0].getWidth();
David Parks
committed
for (int i = 0; i < mMipChain.size(); ++i)
{
LL_PROFILE_GPU_ZONE("probe radiance gen");
static LLStaticHashedString sMipLevel("mipLevel");
static LLStaticHashedString sRoughness("roughness");
static LLStaticHashedString sWidth("u_width");
David Parks
committed
gRadianceGenProgram.uniform1f(sRoughness, (F32)i / (F32)(mMipChain.size() - 1));
gRadianceGenProgram.uniform1f(sMipLevel, i);
David Parks
committed
gRadianceGenProgram.uniform1i(sWidth, mProbeResolution);
David Parks
committed
for (int cf = 0; cf < 6; ++cf)
{ // for each cube face
LLCoordFrame frame;
frame.lookAt(LLVector3(0, 0, 0), LLCubeMapArray::sClipToCubeLookVecs[cf], LLCubeMapArray::sClipToCubeUpVecs[cf]);
F32 mat[16];
frame.getOpenGLRotation(mat);
gGL.loadMatrix(mat);
mVertexBuffer->drawArrays(gGL.TRIANGLE_STRIP, 0, 4);
David Parks
committed
glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, i, 0, 0, probe->mCubeIndex * 6 + cf, 0, 0, res, res);
}
David Parks
committed
if (i != mMipChain.size() - 1)
{
res /= 2;
glViewport(0, 0, res, res);
}
}
David Parks
committed
gRadianceGenProgram.unbind();
}
else
David Parks
committed
//generate irradiance map
gIrradianceGenProgram.bind();
S32 channel = gIrradianceGenProgram.enableTexture(LLShaderMgr::REFLECTION_PROBES, LLTexUnit::TT_CUBE_MAP_ARRAY);
mTexture->bind(channel);
gIrradianceGenProgram.uniform1i(sSourceIdx, sourceIdx);
gIrradianceGenProgram.uniform1f(LLShaderMgr::REFLECTION_PROBE_MAX_LOD, mMaxProbeLOD);
David Parks
committed
mVertexBuffer->setBuffer();
int start_mip = 0;
// find the mip target to start with based on irradiance map resolution
for (start_mip = 0; start_mip < mMipChain.size(); ++start_mip)
David Parks
committed
if (mMipChain[start_mip].getWidth() == LL_IRRADIANCE_MAP_RESOLUTION)
{
break;
}
David Parks
committed
//for (int i = start_mip; i < mMipChain.size(); ++i)
{
int i = start_mip;
LL_PROFILE_GPU_ZONE("probe irradiance gen");
glViewport(0, 0, mMipChain[i].getWidth(), mMipChain[i].getHeight());
for (int cf = 0; cf < 6; ++cf)
{ // for each cube face
LLCoordFrame frame;
frame.lookAt(LLVector3(0, 0, 0), LLCubeMapArray::sClipToCubeLookVecs[cf], LLCubeMapArray::sClipToCubeUpVecs[cf]);
F32 mat[16];
frame.getOpenGLRotation(mat);
gGL.loadMatrix(mat);
mVertexBuffer->drawArrays(gGL.TRIANGLE_STRIP, 0, 4);
S32 res = mMipChain[i].getWidth();
mIrradianceMaps->bind(channel);
glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, i - start_mip, 0, 0, probe->mCubeIndex * 6 + cf, 0, 0, res, res);
mTexture->bind(channel);
}
David Parks
committed
mMipChain[0].flush();
void LLReflectionMapManager::reset()
mReset = true;
void LLReflectionMapManager::shift(const LLVector4a& offset)
{
for (auto& probe : mProbes)
{
probe->mOrigin.add(offset);
}
}
void LLReflectionMapManager::updateNeighbors(LLReflectionMap* probe)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
David Parks
committed
if (mDefaultProbe == probe)
{
return;
}
//remove from existing neighbors
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmun - clear");
for (auto& other : probe->mNeighbors)
{
Brad Kittenbrink
committed
auto const & iter = std::find(other->mNeighbors.begin(), other->mNeighbors.end(), probe);
llassert(iter != other->mNeighbors.end()); // <--- bug davep if this ever happens, something broke badly
other->mNeighbors.erase(iter);
}
probe->mNeighbors.clear();
}
// search for new neighbors
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmun - search");
for (auto& other : mProbes)
{
David Parks
committed
if (other != mDefaultProbe && other != probe)
{
if (probe->intersects(other))
{
probe->mNeighbors.push_back(other);
other->mNeighbors.push_back(probe);
}
}
}
}
}
void LLReflectionMapManager::updateUniforms()
if (!LLPipeline::sReflectionProbesEnabled)
{
return;
}
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
// structure for packing uniform buffer object
David Parks
committed
// see class3/deferred/reflectionProbeF.glsl
struct ReflectionProbeData
{
// for box probes, matrix that transforms from camera space to a [-1, 1] cube representing the bounding box of
// the box probe
LLMatrix4 refBox[LL_MAX_REFLECTION_PROBE_COUNT];
// for sphere probes, origin (xyz) and radius (w) of refmaps in clip space
LLVector4 refSphere[LL_MAX_REFLECTION_PROBE_COUNT];
// extra parameters
// x - irradiance scale
// y - radiance scale
// z - fade in
LLVector4 refParams[LL_MAX_REFLECTION_PROBE_COUNT];
// indices used by probe:
// [i][0] - cubemap array index for this probe
// [i][1] - index into "refNeighbor" for probes that intersect this probe
// [i][2] - number of probes that intersect this probe, or -1 for no neighbors
// [i][3] - priority (probe type stored in sign bit - positive for spheres, negative for boxes)
GLint refIndex[LL_MAX_REFLECTION_PROBE_COUNT][4];
// list of neighbor indices
GLint refNeighbor[4096];
// numbrer of active refmaps
GLint refmapCount;
mReflectionMaps.resize(mReflectionProbeCount);
getReflectionMaps(mReflectionMaps);
ReflectionProbeData rpd;
// load modelview matrix into matrix 4a
LLMatrix4a modelview;
modelview.loadu(gGLModelView);
LLVector4a oa; // scratch space for transformed origin
S32 count = 0;
U32 nc = 0; // neighbor "cursor" - index into refNeighbor to start writing the next probe's list of neighbors
LLEnvironment& environment = LLEnvironment::instance();
LLSettingsSky::ptr_t psky = environment.getCurrentSky();
David Parks
committed
static LLCachedControl<F32> cloud_shadow_scale(gSavedSettings, "RenderCloudShadowAmbianceFactor", 0.125f);
F32 minimum_ambiance = psky->getTotalReflectionProbeAmbiance(cloud_shadow_scale);
F32 ambscale = gCubeSnapshot && !isRadiancePass() ? 0.f : 1.f;
David Parks
committed
F32 radscale = gCubeSnapshot && !isRadiancePass() ? 0.5f : 1.f;
for (auto* refmap : mReflectionMaps)
{
if (refmap == nullptr)
{
break;
}
llassert(refmap->mProbeIndex == count);
llassert(mReflectionMaps[refmap->mProbeIndex] == refmap);
llassert(refmap->mCubeIndex >= 0); // should always be true, if not, getReflectionMaps is bugged
{
David Parks
committed
if (refmap->mViewerObject)
{ // have active manual probes live-track the object they're associated with
refmap->mOrigin.load3(refmap->mViewerObject->getPositionAgent().mV);
refmap->mRadius = refmap->mViewerObject->getScale().mV[0] * 0.5f;
David Parks
committed
}
modelview.affineTransform(refmap->mOrigin, oa);
rpd.refSphere[count].set(oa.getF32ptr());
rpd.refSphere[count].mV[3] = refmap->mRadius;
}
rpd.refIndex[count][0] = refmap->mCubeIndex;
llassert(nc % 4 == 0);
rpd.refIndex[count][1] = nc / 4;
rpd.refIndex[count][3] = refmap->mPriority;
// for objects that are reflection probes, use the volume as the influence volume of the probe
// only possibile influence volumes are boxes and spheres, so detect boxes and treat everything else as spheres
if (refmap->getBox(rpd.refBox[count]))
{ // negate priority to indicate this probe has a box influence volume
rpd.refIndex[count][3] = -rpd.refIndex[count][3];
}
rpd.refParams[count].set(llmax(minimum_ambiance, refmap->getAmbiance())*ambscale, radscale, refmap->mFadeIn, 0.f);
David Parks
committed
S32 ni = nc; // neighbor ("index") - index into refNeighbor to write indices for current reflection probe's neighbors
{
//LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmsu - refNeighbors");
//pack neghbor list
const U32 max_neighbors = 64;
U32 neighbor_count = 0;
for (auto& neighbor : refmap->mNeighbors)
{
if (ni >= 4096)
{ // out of space
break;
}
GLint idx = neighbor->mProbeIndex;
if (idx == -1 || neighbor->mOccluded)
{
continue;
}
// this neighbor may be sampled
rpd.refNeighbor[ni++] = idx;
neighbor_count++;
if (neighbor_count >= max_neighbors)
{
break;
}
if (nc == ni)
{
//no neighbors, tag as empty
rpd.refIndex[count][1] = -1;
}
else
{
rpd.refIndex[count][2] = ni - nc;
// move the cursor forward
nc = ni;
if (nc % 4 != 0)
{ // jump to next power of 4 for compatibility with ivec4
nc += 4 - (nc % 4);
}
}
count++;
}
rpd.refmapCount = count;
//copy rpd into uniform buffer object
if (mUBO == 0)
{
}
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmsu - update buffer");
glBindBuffer(GL_UNIFORM_BUFFER, mUBO);
glBufferData(GL_UNIFORM_BUFFER, sizeof(ReflectionProbeData), &rpd, GL_STREAM_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
void LLReflectionMapManager::setUniforms()
{
if (!LLPipeline::sReflectionProbesEnabled)
{
return;
}
if (mUBO == 0)
{
updateUniforms();
}
glBindBufferBase(GL_UNIFORM_BUFFER, 1, mUBO);
}
void renderReflectionProbe(LLReflectionMap* probe)
{
F32* po = probe->mOrigin.getF32ptr();
//draw orange line from probe to neighbors
gGL.flush();
gGL.diffuseColor4f(1, 0.5f, 0, 1);
gGL.begin(gGL.LINES);
for (auto& neighbor : probe->mNeighbors)
{
if (probe->mViewerObject && neighbor->mViewerObject)
{
continue;
}
gGL.vertex3fv(po);
gGL.vertex3fv(neighbor->mOrigin.getF32ptr());
}
gGL.end();
gGL.flush();
gGL.diffuseColor4f(1, 1, 0, 1);
gGL.begin(gGL.LINES);
for (auto& neighbor : probe->mNeighbors)
{
if (probe->mViewerObject && neighbor->mViewerObject)
{
gGL.vertex3fv(po);
gGL.vertex3fv(neighbor->mOrigin.getF32ptr());
}
}
gGL.end();
gGL.flush();