Newer
Older
/**
* @file llrender.cpp
* @brief LLRender implementation
*
* $LicenseInfo:firstyear=2001&license=viewergpl$
*
* Copyright (c) 2001-2009, Linden Research, Inc.
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llrender.h"
#include "llvertexbuffer.h"
#include "llcubemap.h"
#include "llimagegl.h"
#include "llrendertarget.h"
LLRender gGL;
// Handy copies of last good GL matrices
F64 gGLModelView[16];
F64 gGLLastModelView[16];
F64 gGLProjection[16];
S32 gGLViewport[4];
Palmer Truelson
committed
U32 LLRender::sUICalls = 0;
U32 LLRender::sUIVerts = 0;
static const U32 LL_NUM_TEXTURE_LAYERS = 16;
static GLenum sGLTextureType[] =
{
GL_TEXTURE_2D,
GL_TEXTURE_RECTANGLE_ARB,
GL_TEXTURE_CUBE_MAP_ARB
};
static GLint sGLAddressMode[] =
{
GL_REPEAT,
GL_MIRRORED_REPEAT,
GL_CLAMP_TO_EDGE
};
static GLenum sGLCompareFunc[] =
{
GL_NEVER,
GL_ALWAYS,
GL_LESS,
GL_LEQUAL,
GL_EQUAL,
GL_NOTEQUAL,
GL_GEQUAL,
GL_GREATER
};
const U32 immediate_mask = LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_COLOR | LLVertexBuffer::MAP_TEXCOORD0;
static GLenum sGLBlendFactor[] =
{
GL_ONE,
GL_ZERO,
GL_DST_COLOR,
GL_SRC_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_DST_ALPHA,
GL_SRC_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_ZERO // 'BF_UNDEF'
LLTexUnit::LLTexUnit(S32 index)
: mCurrTexType(TT_NONE), mCurrBlendType(TB_MULT),
mCurrColorOp(TBO_MULT), mCurrAlphaOp(TBO_MULT),
mCurrColorSrc1(TBS_TEX_COLOR), mCurrColorSrc2(TBS_PREV_COLOR),
mCurrAlphaSrc1(TBS_TEX_ALPHA), mCurrAlphaSrc2(TBS_PREV_ALPHA),
mCurrColorScale(1), mCurrAlphaScale(1), mCurrTexture(0),
mHasMipMaps(false)
llassert_always(index < (S32)LL_NUM_TEXTURE_LAYERS);
mIndex = index;
}
//static
U32 LLTexUnit::getInternalType(eTextureType type)
return sGLTextureType[type];
void LLTexUnit::refreshState(void)
// We set dirty to true so that the tex unit knows to ignore caching
// and we reset the cached tex unit state
gGL.flush();
glActiveTextureARB(GL_TEXTURE0_ARB + mIndex);
if (mCurrTexType != TT_NONE)
glEnable(sGLTextureType[mCurrTexType]);
glBindTexture(sGLTextureType[mCurrTexType], mCurrTexture);
{
glDisable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
}
if (mCurrBlendType != TB_COMBINE)
{
setTextureBlendType(mCurrBlendType);
}
else
{
setTextureCombiner(mCurrColorOp, mCurrColorSrc1, mCurrColorSrc2, false);
setTextureCombiner(mCurrAlphaOp, mCurrAlphaSrc1, mCurrAlphaSrc2, true);
}
}
void LLTexUnit::activate(void)
{
if (mIndex < 0) return;
if ((S32)gGL.mCurrTextureUnitIndex != mIndex || gGL.mDirty)
David Parks
committed
gGL.flush();
glActiveTextureARB(GL_TEXTURE0_ARB + mIndex);
gGL.mCurrTextureUnitIndex = mIndex;
}
}
void LLTexUnit::enable(eTextureType type)
if (mIndex < 0) return;
if ( (mCurrTexType != type || gGL.mDirty) && (type != TT_NONE) )
{
activate();
if (mCurrTexType != TT_NONE && !gGL.mDirty)
{
disable(); // Force a disable of a previous texture type if it's enabled.
}
mCurrTexType = type;
gGL.flush();
glEnable(sGLTextureType[type]);
}
}
void LLTexUnit::disable(void)
{
if (mIndex < 0) return;
if (mCurrTexType != TT_NONE)
activate();
unbind(mCurrTexType);
gGL.flush();
glDisable(sGLTextureType[mCurrTexType]);
mCurrTexType = TT_NONE;
bool LLTexUnit::bind(LLTexture* texture, bool for_rendering, bool forceBind)
stop_glerror();
if (mIndex < 0) return false;
gGL.flush();
LLImageGL* gl_tex = NULL ;
if (texture == NULL || !(gl_tex = texture->getGLTexture()))
llwarns << "NULL LLTexUnit::bind texture" << llendl;
return false;
if (!gl_tex->getTexName()) //if texture does not exist
//if deleted, will re-generate it immediately
texture->forceImmediateUpdate() ;
gl_tex->forceUpdateBindStats() ;
return texture->bindDefaultImage(mIndex);
//in audit, replace the selected texture by the default one.
if(gAuditTexture && for_rendering && LLImageGL::sCurTexPickSize > 0)
{
if(texture->getWidth() * texture->getHeight() == LLImageGL::sCurTexPickSize)
{
gl_tex->updateBindStats(gl_tex->mTextureMemory);
return bind(LLImageGL::sHighlightTexturep.get());
}
}
if ((mCurrTexture != gl_tex->getTexName()) || forceBind)
{
activate();
enable(gl_tex->getTarget());
mCurrTexture = gl_tex->getTexName();
glBindTexture(sGLTextureType[gl_tex->getTarget()], mCurrTexture);
if(gl_tex->updateBindStats(gl_tex->mTextureMemory))
{
texture->setActive() ;
texture->updateBindStatsForTester() ;
}
mHasMipMaps = gl_tex->mHasMipMaps;
if (gl_tex->mTexOptionsDirty)
{
gl_tex->mTexOptionsDirty = false;
setTextureAddressMode(gl_tex->mAddressMode);
setTextureFilteringOption(gl_tex->mFilterOption);
}
}
return true;
}
bool LLTexUnit::bind(LLImageGL* texture, bool for_rendering, bool forceBind)
{
stop_glerror();
if (mIndex < 0) return false;
if(!texture)
{
llwarns << "NULL LLTexUnit::bind texture" << llendl;
return false;
}
if(!texture->getTexName())
{
if(LLImageGL::sDefaultGLTexture && LLImageGL::sDefaultGLTexture->getTexName())
{
return bind(LLImageGL::sDefaultGLTexture) ;
}
return false ;
}
if ((mCurrTexture != texture->getTexName()) || forceBind)
Palmer Truelson
committed
gGL.flush();
activate();
enable(texture->getTarget());
mCurrTexture = texture->getTexName();
glBindTexture(sGLTextureType[texture->getTarget()], mCurrTexture);
texture->updateBindStats(texture->mTextureMemory);
mHasMipMaps = texture->mHasMipMaps;
if (texture->mTexOptionsDirty)
{
texture->mTexOptionsDirty = false;
setTextureAddressMode(texture->mAddressMode);
setTextureFilteringOption(texture->mFilterOption);
}
}
bool LLTexUnit::bind(LLCubeMap* cubeMap)
if (mIndex < 0) return false;
gGL.flush();
if (cubeMap == NULL)
{
llwarns << "NULL LLTexUnit::bind cubemap" << llendl;
return false;
}
if (mCurrTexture != cubeMap->mImages[0]->getTexName())
{
if (gGLManager.mHasCubeMap && LLCubeMap::sUseCubeMaps)
{
activate();
enable(LLTexUnit::TT_CUBE_MAP);
mCurrTexture = cubeMap->mImages[0]->getTexName();
glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, mCurrTexture);
mHasMipMaps = cubeMap->mImages[0]->mHasMipMaps;
cubeMap->mImages[0]->updateBindStats(cubeMap->mImages[0]->mTextureMemory);
if (cubeMap->mImages[0]->mTexOptionsDirty)
{
cubeMap->mImages[0]->mTexOptionsDirty = false;
setTextureAddressMode(cubeMap->mImages[0]->mAddressMode);
setTextureFilteringOption(cubeMap->mImages[0]->mFilterOption);
}
return true;
}
else
{
llwarns << "Using cube map without extension!" << llendl;
return false;
// LLRenderTarget is unavailible on the mapserver since it uses FBOs.
#if !LL_MESA_HEADLESS
bool LLTexUnit::bind(LLRenderTarget* renderTarget, bool bindDepth)
{
if (mIndex < 0) return false;
gGL.flush();
if (bindDepth)
{
if (renderTarget->hasStencil())
{
llerrs << "Cannot bind a render buffer for sampling. Allocate render target without a stencil buffer if sampling of depth buffer is required." << llendl;
}
bindManual(renderTarget->getUsage(), renderTarget->getDepth());
}
else
{
bindManual(renderTarget->getUsage(), renderTarget->getTexture());
}
return true;
}
#endif // LL_MESA_HEADLESS
bool LLTexUnit::bindManual(eTextureType type, U32 texture, bool hasMips)
if (mIndex < 0)
{
return false;
}
if(mCurrTexture != texture)
{
gGL.flush();
activate();
enable(type);
mCurrTexture = texture;
glBindTexture(sGLTextureType[type], texture);
mHasMipMaps = hasMips;
}
return true;
}
void LLTexUnit::unbind(eTextureType type)
{
stop_glerror();
if (mIndex < 0) return;
// Disabled caching of binding state.
if (mCurrTexType == type)
{
gGL.flush();
activate();
mCurrTexture = 0;
glBindTexture(sGLTextureType[type], 0);
}
}
void LLTexUnit::setTextureAddressMode(eTextureAddressMode mode)
{
if (mIndex < 0 || mCurrTexture == 0) return;
gGL.flush();
activate();
glTexParameteri (sGLTextureType[mCurrTexType], GL_TEXTURE_WRAP_S, sGLAddressMode[mode]);
glTexParameteri (sGLTextureType[mCurrTexType], GL_TEXTURE_WRAP_T, sGLAddressMode[mode]);
if (mCurrTexType == TT_CUBE_MAP)
glTexParameteri (GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_R, sGLAddressMode[mode]);
}
}
void LLTexUnit::setTextureFilteringOption(LLTexUnit::eTextureFilterOptions option)
{
if (mIndex < 0 || mCurrTexture == 0) return;
gGL.flush();
if (option == TFO_POINT)
{
glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MAG_FILTER, GL_NEAREST);
}
else
{
glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MAG_FILTER, GL_LINEAR);
}
if (option >= TFO_TRILINEAR && mHasMipMaps)
{
glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
}
else if (option >= TFO_BILINEAR)
{
glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
else
{
glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
if (gGLManager.mHasAnisotropic)
{
if (LLImageGL::sGlobalUseAnisotropic && option == TFO_ANISOTROPIC)
{
if (gGL.mMaxAnisotropy < 1.f)
{
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &gGL.mMaxAnisotropy);
}
glTexParameterf(sGLTextureType[mCurrTexType], GL_TEXTURE_MAX_ANISOTROPY_EXT, gGL.mMaxAnisotropy);
}
else
glTexParameterf(sGLTextureType[mCurrTexType], GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.f);
}
void LLTexUnit::setTextureBlendType(eTextureBlendType type)
{
if (mIndex < 0) return;
// Do nothing if it's already correctly set.
if (mCurrBlendType == type && !gGL.mDirty)
{
return;
}
Palmer Truelson
committed
gGL.flush();
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
activate();
mCurrBlendType = type;
S32 scale_amount = 1;
switch (type)
{
case TB_REPLACE:
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
break;
case TB_ADD:
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_ADD);
break;
case TB_MULT:
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
break;
case TB_MULT_X2:
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
scale_amount = 2;
break;
case TB_ALPHA_BLEND:
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
break;
case TB_COMBINE:
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_ARB);
break;
default:
llerrs << "Unknown Texture Blend Type: " << type << llendl;
break;
}
setColorScale(scale_amount);
setAlphaScale(1);
}
GLint LLTexUnit::getTextureSource(eTextureBlendSrc src)
{
switch(src)
{
// All four cases should return the same value.
case TBS_PREV_COLOR:
case TBS_PREV_ALPHA:
case TBS_ONE_MINUS_PREV_COLOR:
case TBS_ONE_MINUS_PREV_ALPHA:
return GL_PREVIOUS_ARB;
// All four cases should return the same value.
case TBS_TEX_COLOR:
case TBS_TEX_ALPHA:
case TBS_ONE_MINUS_TEX_COLOR:
case TBS_ONE_MINUS_TEX_ALPHA:
return GL_TEXTURE;
// All four cases should return the same value.
case TBS_VERT_COLOR:
case TBS_VERT_ALPHA:
case TBS_ONE_MINUS_VERT_COLOR:
case TBS_ONE_MINUS_VERT_ALPHA:
return GL_PRIMARY_COLOR_ARB;
// All four cases should return the same value.
case TBS_CONST_COLOR:
case TBS_CONST_ALPHA:
case TBS_ONE_MINUS_CONST_COLOR:
case TBS_ONE_MINUS_CONST_ALPHA:
return GL_CONSTANT_ARB;
default:
llwarns << "Unknown eTextureBlendSrc: " << src << ". Using Vertex Color instead." << llendl;
return GL_PRIMARY_COLOR_ARB;
}
}
GLint LLTexUnit::getTextureSourceType(eTextureBlendSrc src, bool isAlpha)
{
switch(src)
{
// All four cases should return the same value.
case TBS_PREV_COLOR:
case TBS_TEX_COLOR:
case TBS_VERT_COLOR:
case TBS_CONST_COLOR:
return (isAlpha) ? GL_SRC_ALPHA: GL_SRC_COLOR;
// All four cases should return the same value.
case TBS_PREV_ALPHA:
case TBS_TEX_ALPHA:
case TBS_VERT_ALPHA:
case TBS_CONST_ALPHA:
return GL_SRC_ALPHA;
// All four cases should return the same value.
case TBS_ONE_MINUS_PREV_COLOR:
case TBS_ONE_MINUS_TEX_COLOR:
case TBS_ONE_MINUS_VERT_COLOR:
case TBS_ONE_MINUS_CONST_COLOR:
return (isAlpha) ? GL_ONE_MINUS_SRC_ALPHA : GL_ONE_MINUS_SRC_COLOR;
// All four cases should return the same value.
case TBS_ONE_MINUS_PREV_ALPHA:
case TBS_ONE_MINUS_TEX_ALPHA:
case TBS_ONE_MINUS_VERT_ALPHA:
case TBS_ONE_MINUS_CONST_ALPHA:
return GL_ONE_MINUS_SRC_ALPHA;
default:
llwarns << "Unknown eTextureBlendSrc: " << src << ". Using Source Color or Alpha instead." << llendl;
return (isAlpha) ? GL_SRC_ALPHA: GL_SRC_COLOR;
}
}
void LLTexUnit::setTextureCombiner(eTextureBlendOp op, eTextureBlendSrc src1, eTextureBlendSrc src2, bool isAlpha)
{
if (mIndex < 0) return;
if (mCurrBlendType != TB_COMBINE || gGL.mDirty)
{
mCurrBlendType = TB_COMBINE;
David Parks
committed
gGL.flush();
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_ARB);
}
// We want an early out, because this function does a LOT of stuff.
if ( ( (isAlpha && (mCurrAlphaOp == op) && (mCurrAlphaSrc1 == src1) && (mCurrAlphaSrc2 == src2))
|| (!isAlpha && (mCurrColorOp == op) && (mCurrColorSrc1 == src1) && (mCurrColorSrc2 == src2)) ) && !gGL.mDirty)
{
return;
}
David Parks
committed
gGL.flush();
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
// Get the gl source enums according to the eTextureBlendSrc sources passed in
GLint source1 = getTextureSource(src1);
GLint source2 = getTextureSource(src2);
// Get the gl operand enums according to the eTextureBlendSrc sources passed in
GLint operand1 = getTextureSourceType(src1, isAlpha);
GLint operand2 = getTextureSourceType(src2, isAlpha);
// Default the scale amount to 1
S32 scale_amount = 1;
GLenum comb_enum, src0_enum, src1_enum, src2_enum, operand0_enum, operand1_enum, operand2_enum;
if (isAlpha)
{
// Set enums to ALPHA ones
comb_enum = GL_COMBINE_ALPHA_ARB;
src0_enum = GL_SOURCE0_ALPHA_ARB;
src1_enum = GL_SOURCE1_ALPHA_ARB;
src2_enum = GL_SOURCE2_ALPHA_ARB;
operand0_enum = GL_OPERAND0_ALPHA_ARB;
operand1_enum = GL_OPERAND1_ALPHA_ARB;
operand2_enum = GL_OPERAND2_ALPHA_ARB;
// cache current combiner
mCurrAlphaOp = op;
mCurrAlphaSrc1 = src1;
mCurrAlphaSrc2 = src2;
}
else
{
// Set enums to RGB ones
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
comb_enum = GL_COMBINE_RGB_ARB;
src0_enum = GL_SOURCE0_RGB_ARB;
src1_enum = GL_SOURCE1_RGB_ARB;
src2_enum = GL_SOURCE2_RGB_ARB;
operand0_enum = GL_OPERAND0_RGB_ARB;
operand1_enum = GL_OPERAND1_RGB_ARB;
operand2_enum = GL_OPERAND2_RGB_ARB;
// cache current combiner
mCurrColorOp = op;
mCurrColorSrc1 = src1;
mCurrColorSrc2 = src2;
}
switch(op)
{
case TBO_REPLACE:
// Slightly special syntax (no second sources), just set all and return.
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, src0_enum, source1);
glTexEnvi(GL_TEXTURE_ENV, operand0_enum, operand1);
(isAlpha) ? setAlphaScale(1) : setColorScale(1);
return;
case TBO_MULT:
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_MODULATE);
break;
case TBO_MULT_X2:
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_MODULATE);
scale_amount = 2;
break;
case TBO_MULT_X4:
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_MODULATE);
scale_amount = 4;
break;
case TBO_ADD:
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_ADD);
break;
case TBO_ADD_SIGNED:
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_ADD_SIGNED_ARB);
break;
case TBO_SUBTRACT:
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_SUBTRACT_ARB);
break;
case TBO_LERP_VERT_ALPHA:
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_INTERPOLATE);
glTexEnvi(GL_TEXTURE_ENV, src2_enum, GL_PRIMARY_COLOR_ARB);
glTexEnvi(GL_TEXTURE_ENV, operand2_enum, GL_SRC_ALPHA);
break;
case TBO_LERP_TEX_ALPHA:
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_INTERPOLATE);
glTexEnvi(GL_TEXTURE_ENV, src2_enum, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, operand2_enum, GL_SRC_ALPHA);
break;
case TBO_LERP_PREV_ALPHA:
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_INTERPOLATE);
glTexEnvi(GL_TEXTURE_ENV, src2_enum, GL_PREVIOUS_ARB);
glTexEnvi(GL_TEXTURE_ENV, operand2_enum, GL_SRC_ALPHA);
break;
case TBO_LERP_CONST_ALPHA:
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_INTERPOLATE);
glTexEnvi(GL_TEXTURE_ENV, src2_enum, GL_CONSTANT_ARB);
glTexEnvi(GL_TEXTURE_ENV, operand2_enum, GL_SRC_ALPHA);
break;
case TBO_LERP_VERT_COLOR:
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_INTERPOLATE);
glTexEnvi(GL_TEXTURE_ENV, src2_enum, GL_PRIMARY_COLOR_ARB);
glTexEnvi(GL_TEXTURE_ENV, operand2_enum, (isAlpha) ? GL_SRC_ALPHA : GL_SRC_COLOR);
break;
default:
llwarns << "Unknown eTextureBlendOp: " << op << ". Setting op to replace." << llendl;
// Slightly special syntax (no second sources), just set all and return.
glTexEnvi(GL_TEXTURE_ENV, comb_enum, GL_REPLACE);
glTexEnvi(GL_TEXTURE_ENV, src0_enum, source1);
glTexEnvi(GL_TEXTURE_ENV, operand0_enum, operand1);
(isAlpha) ? setAlphaScale(1) : setColorScale(1);
return;
}
// Set sources, operands, and scale accordingly
glTexEnvi(GL_TEXTURE_ENV, src0_enum, source1);
glTexEnvi(GL_TEXTURE_ENV, operand0_enum, operand1);
glTexEnvi(GL_TEXTURE_ENV, src1_enum, source2);
glTexEnvi(GL_TEXTURE_ENV, operand1_enum, operand2);
(isAlpha) ? setAlphaScale(scale_amount) : setColorScale(scale_amount);
}
void LLTexUnit::setColorScale(S32 scale)
{
if (mCurrColorScale != scale || gGL.mDirty)
{
mCurrColorScale = scale;
gGL.flush();
glTexEnvi( GL_TEXTURE_ENV, GL_RGB_SCALE, scale );
}
}
void LLTexUnit::setAlphaScale(S32 scale)
{
if (mCurrAlphaScale != scale || gGL.mDirty)
{
mCurrAlphaScale = scale;
gGL.flush();
glTexEnvi( GL_TEXTURE_ENV, GL_ALPHA_SCALE, scale );
}
}
// Useful for debugging that you've manually assigned a texture operation to the correct
// texture unit based on the currently set active texture in opengl.
void LLTexUnit::debugTextureUnit(void)
{
if (mIndex < 0) return;
GLint activeTexture;
glGetIntegerv(GL_ACTIVE_TEXTURE_ARB, &activeTexture);
if ((GL_TEXTURE0_ARB + mIndex) != activeTexture)
{
U32 set_unit = (activeTexture - GL_TEXTURE0_ARB);
llwarns << "Incorrect Texture Unit! Expected: " << set_unit << " Actual: " << mIndex << llendl;
}
}
LLRender::LLRender()
: mDirty(false),
mCount(0),
mMode(LLRender::TRIANGLES),
mCurrTextureUnitIndex(0),
mMaxAnisotropy(0.f)
{
mBuffer = new LLVertexBuffer(immediate_mask, 0);
mBuffer->allocateBuffer(4096, 0, TRUE);
mBuffer->getVertexStrider(mVerticesp);
mBuffer->getTexCoord0Strider(mTexcoordsp);
mBuffer->getColorStrider(mColorsp);
mTexUnits.reserve(LL_NUM_TEXTURE_LAYERS);
for (U32 i = 0; i < LL_NUM_TEXTURE_LAYERS; i++)
{
mTexUnits.push_back(new LLTexUnit(i));
}
mDummyTexUnit = new LLTexUnit(-1);
for (U32 i = 0; i < 4; i++)
{
mCurrColorMask[i] = true;
}
mCurrAlphaFunc = CF_DEFAULT;
mCurrAlphaFuncVal = 0.01f;
mCurrBlendColorSFactor = BF_UNDEF;
mCurrBlendAlphaSFactor = BF_UNDEF;
mCurrBlendColorDFactor = BF_UNDEF;
mCurrBlendAlphaDFactor = BF_UNDEF;
}
LLRender::~LLRender()
{
shutdown();
}
void LLRender::shutdown()
{
for (U32 i = 0; i < mTexUnits.size(); i++)
{
delete mTexUnits[i];
}
delete mDummyTexUnit;
mDummyTexUnit = NULL;
}
void LLRender::refreshState(void)
{
mDirty = true;
U32 active_unit = mCurrTextureUnitIndex;
for (U32 i = 0; i < mTexUnits.size(); i++)
{
mTexUnits[i]->refreshState();
}
mTexUnits[active_unit]->activate();
setColorMask(mCurrColorMask[0], mCurrColorMask[1], mCurrColorMask[2], mCurrColorMask[3]);
setAlphaRejectSettings(mCurrAlphaFunc, mCurrAlphaFuncVal);
mDirty = false;
}
void LLRender::translatef(const GLfloat& x, const GLfloat& y, const GLfloat& z)
{
flush();
glTranslatef(x,y,z);
}
void LLRender::scalef(const GLfloat& x, const GLfloat& y, const GLfloat& z)
{
flush();
glScalef(x,y,z);
}
void LLRender::pushMatrix()
{
flush();
glPushMatrix();
}
void LLRender::popMatrix()
{
flush();
glPopMatrix();
}
Palmer Truelson
committed
void LLRender::translateUI(F32 x, F32 y, F32 z)
{
if (mUIOffset.empty())
{
llerrs << "Need to push a UI translation frame before offsetting" << llendl;
}
mUIOffset.back().mV[0] += x;
mUIOffset.back().mV[1] += y;
mUIOffset.back().mV[2] += z;
Palmer Truelson
committed
}
void LLRender::scaleUI(F32 x, F32 y, F32 z)
{
if (mUIScale.empty())
{
llerrs << "Need to push a UI transformation frame before scaling." << llendl;
}
mUIScale.back().scaleVec(LLVector3(x,y,z));
Palmer Truelson
committed
}
void LLRender::pushUIMatrix()
{
mUIOffset.push_back(LLVector3(0,0,0));
mUIOffset.push_back(mUIOffset.back());
Palmer Truelson
committed
if (mUIScale.empty())
{
mUIScale.push_back(LLVector3(1,1,1));
Palmer Truelson
committed
}
else
{
mUIScale.push_back(mUIScale.back());
Palmer Truelson
committed
}
}
void LLRender::popUIMatrix()
{
if (mUIOffset.empty())
{
llerrs << "UI offset stack blown." << llendl;
}
mUIOffset.pop_back();
mUIScale.pop_back();
Palmer Truelson
committed
}
LLVector3 LLRender::getUITranslation()
{
if (mUIOffset.empty())
{
return LLVector3(0,0,0);
Palmer Truelson
committed
}
return mUIOffset.back();
Palmer Truelson
committed
}
LLVector3 LLRender::getUIScale()
{
if (mUIScale.empty())
{
return LLVector3(1,1,1);
Palmer Truelson
committed
}
return mUIScale.back();
Palmer Truelson
committed
}
void LLRender::loadUIIdentity()
{
if (mUIOffset.empty())
{
llerrs << "Need to push UI translation frame before clearing offset." << llendl;
}
mUIOffset.back().setVec(0,0,0);
mUIScale.back().setVec(1,1,1);
Palmer Truelson
committed
}
void LLRender::setColorMask(bool writeColor, bool writeAlpha)
{
setColorMask(writeColor, writeColor, writeColor, writeAlpha);
}
void LLRender::setColorMask(bool writeColorR, bool writeColorG, bool writeColorB, bool writeAlpha)
{
flush();
mCurrColorMask[0] = writeColorR;
mCurrColorMask[1] = writeColorG;
mCurrColorMask[2] = writeColorB;
mCurrColorMask[3] = writeAlpha;
glColorMask(writeColorR ? GL_TRUE : GL_FALSE,
writeColorG ? GL_TRUE : GL_FALSE,
writeColorB ? GL_TRUE : GL_FALSE,
writeAlpha ? GL_TRUE : GL_FALSE);
}
void LLRender::setSceneBlendType(eBlendType type)
{
switch (type)
{
case BT_ALPHA:
blendFunc(BF_SOURCE_ALPHA, BF_ONE_MINUS_SOURCE_ALPHA);
break;
case BT_ADD:
break;
case BT_ADD_WITH_ALPHA:
blendFunc(BF_SOURCE_ALPHA, BF_ONE);
break;
case BT_MULT:
case BT_MULT_ALPHA:
blendFunc(BF_DEST_COLOR, BF_SOURCE_COLOR);
break;
case BT_REPLACE:
break;
default:
llerrs << "Unknown Scene Blend Type: " << type << llendl;
break;
}
}
void LLRender::setAlphaRejectSettings(eCompareFunc func, F32 value)
{
flush();
mCurrAlphaFunc = func;
mCurrAlphaFuncVal = value;
if (func == CF_DEFAULT)
{
glAlphaFunc(GL_GREATER, 0.01f);
}
else
{
glAlphaFunc(sGLCompareFunc[func], value);
}
}
void LLRender::blendFunc(eBlendFactor sfactor, eBlendFactor dfactor)
{
llassert(sfactor < BF_UNDEF);
llassert(dfactor < BF_UNDEF);
if (mCurrBlendColorSFactor != sfactor || mCurrBlendColorDFactor != dfactor ||