Newer
Older
Merov Linden
committed
/**
* @file llimagej2ckdu.cpp
* @brief This is an implementation of JPEG2000 encode/decode using Kakadu
*
* $LicenseInfo:firstyear=2010&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llimagej2ckdu.h"
#include "lltimer.h"
#include "llpointer.h"
#include "llkdumem.h"
class kdc_flow_control {
Merov Linden
committed
public:
kdc_flow_control(kdu_image_in_base *img_in, kdu_codestream codestream);
~kdc_flow_control();
bool advance_components();
void process_components();
private:
Merov Linden
committed
struct kdc_component_flow_control {
public:
kdu_image_in_base *reader;
int vert_subsampling;
int ratio_counter; /* Initialized to 0, decremented by `count_delta';
when < 0, a new line must be processed, after
which it is incremented by `vert_subsampling'. */
Merov Linden
committed
int initial_lines;
int remaining_lines;
kdu_line_buf *line;
};
kdu_codestream codestream;
kdu_dims valid_tile_indices;
kdu_coords tile_idx;
kdu_tile tile;
int num_components;
kdc_component_flow_control *components;
int count_delta; // Holds the minimum of the `vert_subsampling' fields
kdu_multi_analysis engine;
kdu_long max_buffer_memory;
Merov Linden
committed
//
// Kakadu specific implementation
//
void set_default_colour_weights(kdu_params *siz);
const char* engineInfoLLImageJ2CKDU()
{
Merov Linden
committed
std::string version = llformat("KDU %s", KDU_CORE_VERSION);
return version.c_str();
Merov Linden
committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
}
LLImageJ2CKDU* createLLImageJ2CKDU()
{
return new LLImageJ2CKDU();
}
void destroyLLImageJ2CKDU(LLImageJ2CKDU* kdu)
{
delete kdu;
kdu = NULL;
}
LLImageJ2CImpl* fallbackCreateLLImageJ2CImpl()
{
return new LLImageJ2CKDU();
}
void fallbackDestroyLLImageJ2CImpl(LLImageJ2CImpl* impl)
{
delete impl;
impl = NULL;
}
const char* fallbackEngineInfoLLImageJ2CImpl()
{
return engineInfoLLImageJ2CKDU();
}
class LLKDUDecodeState
{
public:
Merov Linden
committed
LLKDUDecodeState(kdu_tile tile, kdu_byte *buf, S32 row_gap);
~LLKDUDecodeState();
BOOL processTileDecode(F32 decode_time, BOOL limit_time = TRUE);
Merov Linden
committed
Merov Linden
committed
private:
Merov Linden
committed
S32 mNumComponents;
BOOL mUseYCC;
kdu_dims mDims;
kdu_sample_allocator mAllocator;
kdu_tile_comp mComps[4];
kdu_line_buf mLines[4];
kdu_pull_ifc mEngines[4];
Merov Linden
committed
bool mReversible[4]; // Some components may be reversible and others not
int mBitDepths[4]; // Original bit-depth may be quite different from 8
Merov Linden
committed
Merov Linden
committed
kdu_tile mTile;
kdu_byte *mBuf;
S32 mRowGap;
};
void ll_kdu_error( void )
{
// *FIX: This exception is bad, bad, bad. It gets thrown from a
// destructor which can lead to immediate program termination!
Merov Linden
committed
throw "ll_kdu_error() throwing an exception";
}
// Stuff for new kdu error handling
Merov Linden
committed
class LLKDUMessageWarning : public kdu_message
{
public:
Merov Linden
committed
/*virtual*/ void put_text(const char *s);
/*virtual*/ void put_text(const kdu_uint16 *s);
Merov Linden
committed
static LLKDUMessageWarning sDefaultMessage;
};
class LLKDUMessageError : public kdu_message
{
public:
Merov Linden
committed
/*virtual*/ void put_text(const char *s);
/*virtual*/ void put_text(const kdu_uint16 *s);
Merov Linden
committed
/*virtual*/ void flush(bool end_of_message = false);
Merov Linden
committed
static LLKDUMessageError sDefaultMessage;
};
void LLKDUMessageWarning::put_text(const char *s)
{
llinfos << "KDU Warning: " << s << llendl;
}
Merov Linden
committed
void LLKDUMessageWarning::put_text(const kdu_uint16 *s)
{
llinfos << "KDU Warning: " << s << llendl;
}
Merov Linden
committed
void LLKDUMessageError::put_text(const char *s)
{
llinfos << "KDU Error: " << s << llendl;
}
Merov Linden
committed
void LLKDUMessageError::put_text(const kdu_uint16 *s)
{
llinfos << "KDU Error: " << s << llendl;
}
Merov Linden
committed
void LLKDUMessageError::flush(bool end_of_message)
{
Merov Linden
committed
if (end_of_message)
Merov Linden
committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
{
throw "KDU throwing an exception";
}
}
LLKDUMessageWarning LLKDUMessageWarning::sDefaultMessage;
LLKDUMessageError LLKDUMessageError::sDefaultMessage;
static bool kdu_message_initialized = false;
LLImageJ2CKDU::LLImageJ2CKDU() : LLImageJ2CImpl(),
mInputp(NULL),
mCodeStreamp(NULL),
mTPosp(NULL),
mTileIndicesp(NULL),
mRawImagep(NULL),
mDecodeState(NULL)
{
}
LLImageJ2CKDU::~LLImageJ2CKDU()
{
cleanupCodeStream(); // in case destroyed before decode completed
}
// Stuff for new simple decode
void transfer_bytes(kdu_byte *dest, kdu_line_buf &src, int gap, int precision);
void LLImageJ2CKDU::setupCodeStream(LLImageJ2C &base, BOOL keep_codestream, ECodeStreamMode mode)
{
S32 data_size = base.getDataSize();
Merov Linden
committed
S32 max_bytes = (base.getMaxBytes() ? base.getMaxBytes() : data_size);
Merov Linden
committed
//
// Initialization
//
if (!kdu_message_initialized)
{
kdu_message_initialized = true;
kdu_customize_errors(&LLKDUMessageError::sDefaultMessage);
kdu_customize_warnings(&LLKDUMessageWarning::sDefaultMessage);
}
if (mCodeStreamp)
{
mCodeStreamp->destroy();
delete mCodeStreamp;
mCodeStreamp = NULL;
}
if (!mInputp && base.getData())
Merov Linden
committed
{
// The compressed data has been loaded
// Setup the source for the codestream
Merov Linden
committed
mInputp = new LLKDUMemSource(base.getData(), data_size);
}
if (mInputp)
{
mInputp->reset();
}
Merov Linden
committed
mCodeStreamp = new kdu_codestream;
mCodeStreamp->create(mInputp);
// Set the maximum number of bytes to use from the codestream
Merov Linden
committed
mCodeStreamp->set_max_bytes(max_bytes);
Merov Linden
committed
// If you want to flip or rotate the image for some reason, change
Merov Linden
committed
// the resolution, or identify a restricted region of interest, this is
// the place to do it. You may use "kdu_codestream::change_appearance"
// and "kdu_codestream::apply_input_restrictions" for this purpose.
Merov Linden
committed
// If you wish to truncate the code-stream prior to decompression, you
Merov Linden
committed
// may use "kdu_codestream::set_max_bytes".
Merov Linden
committed
// If you wish to retain all compressed data so that the material
Merov Linden
committed
// can be decompressed multiple times, possibly with different appearance
// parameters, you should call "kdu_codestream::set_persistent" here.
Merov Linden
committed
// There are a variety of other features which must be enabled at
// this point if you want to take advantage of them. See the
Merov Linden
committed
// descriptions appearing with the "kdu_codestream" interface functions
// in "kdu_compressed.h" for an itemized account of these capabilities.
Merov Linden
committed
switch (mode)
Merov Linden
committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
{
case MODE_FAST:
mCodeStreamp->set_fast();
break;
case MODE_RESILIENT:
mCodeStreamp->set_resilient();
break;
case MODE_FUSSY:
mCodeStreamp->set_fussy();
break;
default:
llassert(0);
mCodeStreamp->set_fast();
}
kdu_dims dims;
mCodeStreamp->get_dims(0,dims);
S32 components = mCodeStreamp->get_num_components();
if (components >= 3)
{ // Check that components have consistent dimensions (for PPM file)
kdu_dims dims1; mCodeStreamp->get_dims(1,dims1);
kdu_dims dims2; mCodeStreamp->get_dims(2,dims2);
if ((dims1 != dims) || (dims2 != dims))
{
llerrs << "Components don't have matching dimensions!" << llendl;
}
}
base.setSize(dims.size.x, dims.size.y, components);
if (!keep_codestream)
{
mCodeStreamp->destroy();
delete mCodeStreamp;
mCodeStreamp = NULL;
delete mInputp;
mInputp = NULL;
}
}
void LLImageJ2CKDU::cleanupCodeStream()
{
delete mInputp;
mInputp = NULL;
delete mDecodeState;
mDecodeState = NULL;
if (mCodeStreamp)
{
mCodeStreamp->destroy();
delete mCodeStreamp;
mCodeStreamp = NULL;
}
delete mTPosp;
mTPosp = NULL;
delete mTileIndicesp;
mTileIndicesp = NULL;
}
Merov Linden
committed
BOOL LLImageJ2CKDU::initDecode(LLImageJ2C &base, LLImageRaw &raw_image, int discard_level, int* region)
{
return initDecode(base,raw_image,0.0f,MODE_FAST,0,4,discard_level,region);
}
BOOL LLImageJ2CKDU::initDecode(LLImageJ2C &base, LLImageRaw &raw_image, F32 decode_time, ECodeStreamMode mode, S32 first_channel, S32 max_channel_count, int discard_level, int* region)
Merov Linden
committed
{
base.resetLastError();
// *FIX: kdu calls our callback function if there's an error, and then bombs.
// To regain control, we throw an exception, and catch it here.
try
{
base.updateRawDiscardLevel();
setupCodeStream(base, TRUE, mode);
mRawImagep = &raw_image;
mCodeStreamp->change_appearance(false, true, false);
Merov Linden
committed
// Apply loading discard level and cropping if required
kdu_dims* region_kdu = NULL;
if (region != NULL)
{
region_kdu = new kdu_dims;
region_kdu->pos.x = region[0];
region_kdu->pos.y = region[1];
region_kdu->size.x = region[2] - region[0];
region_kdu->size.y = region[3] - region[1];
}
int discard = (discard_level != -1 ? discard_level : base.getRawDiscardLevel());
mCodeStreamp->apply_input_restrictions( first_channel, max_channel_count, discard, 0, region_kdu);
Merov Linden
committed
kdu_dims dims; mCodeStreamp->get_dims(0,dims);
S32 channels = base.getComponents() - first_channel;
Merov Linden
committed
if (channels > max_channel_count)
Merov Linden
committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
{
channels = max_channel_count;
}
raw_image.resize(dims.size.x, dims.size.y, channels);
// llinfos << "Resizing to " << dims.size.x << ":" << dims.size.y << llendl;
if (!mTileIndicesp)
{
mTileIndicesp = new kdu_dims;
}
mCodeStreamp->get_valid_tiles(*mTileIndicesp);
if (!mTPosp)
{
mTPosp = new kdu_coords;
mTPosp->y = 0;
mTPosp->x = 0;
}
}
catch (const char* msg)
{
base.setLastError(ll_safe_string(msg));
return FALSE;
}
catch (...)
{
base.setLastError("Unknown J2C error");
return FALSE;
}
return TRUE;
}
// Returns TRUE to mean done, whether successful or not.
BOOL LLImageJ2CKDU::decodeImpl(LLImageJ2C &base, LLImageRaw &raw_image, F32 decode_time, S32 first_channel, S32 max_channel_count)
{
ECodeStreamMode mode = MODE_FAST;
LLTimer decode_timer;
if (!mCodeStreamp)
{
if (!initDecode(base, raw_image, decode_time, mode, first_channel, max_channel_count))
{
// Initializing the J2C decode failed, bail out.
cleanupCodeStream();
return TRUE; // done
}
}
// These can probably be grabbed from what's saved in the class.
kdu_dims dims;
mCodeStreamp->get_dims(0,dims);
// Now we are ready to walk through the tiles processing them one-by-one.
kdu_byte *buffer = raw_image.getData();
while (mTPosp->y < mTileIndicesp->size.y)
{
while (mTPosp->x < mTileIndicesp->size.x)
{
try
{
if (!mDecodeState)
{
kdu_tile tile = mCodeStreamp->open_tile(*(mTPosp)+mTileIndicesp->pos);
// Find the region of the buffer occupied by this
// tile. Note that we have no control over
// sub-sampling factors which might have been used
// during compression and so it can happen that tiles
// (at the image component level) actually have
// different dimensions. For this reason, we cannot
// figure out the buffer region occupied by a tile
// directly from the tile indices. Instead, we query
// the highest resolution of the first tile-component
// concerning its location and size on the canvas --
// the `dims' object already holds the location and
// size of the entire image component on the same
// canvas coordinate system. Comparing the two tells
// us where the current tile is in the buffer.
S32 channels = base.getComponents() - first_channel;
Merov Linden
committed
if (channels > max_channel_count)
Merov Linden
committed
{
channels = max_channel_count;
}
kdu_resolution res = tile.access_component(0).access_resolution();
kdu_dims tile_dims; res.get_dims(tile_dims);
kdu_coords offset = tile_dims.pos - dims.pos;
int row_gap = channels*dims.size.x; // inter-row separation
kdu_byte *buf = buffer + offset.y*row_gap + offset.x*channels;
mDecodeState = new LLKDUDecodeState(tile, buf, row_gap);
}
// Do the actual processing
F32 remaining_time = decode_time - decode_timer.getElapsedTimeF32();
// This is where we do the actual decode. If we run out of time, return false.
if (mDecodeState->processTileDecode(remaining_time, (decode_time > 0.0f)))
{
delete mDecodeState;
mDecodeState = NULL;
}
else
{
// Not finished decoding yet.
// setLastError("Ran out of time while decoding");
return FALSE;
}
}
Merov Linden
committed
catch (const char* msg)
Merov Linden
committed
{
base.setLastError(ll_safe_string(msg));
base.decodeFailed();
cleanupCodeStream();
return TRUE; // done
}
Merov Linden
committed
catch (...)
Merov Linden
committed
{
base.setLastError( "Unknown J2C error" );
base.decodeFailed();
cleanupCodeStream();
return TRUE; // done
}
mTPosp->x++;
}
mTPosp->y++;
mTPosp->x = 0;
}
cleanupCodeStream();
return TRUE;
}
BOOL LLImageJ2CKDU::encodeImpl(LLImageJ2C &base, const LLImageRaw &raw_image, const char* comment_text, F32 encode_time, BOOL reversible)
{
Merov Linden
committed
// Declare and set simple arguments
bool transpose = false;
bool vflip = true;
bool hflip = false;
Merov Linden
committed
try
{
Merov Linden
committed
// Set up input image files
Merov Linden
committed
siz_params siz;
Merov Linden
committed
// Should set rate someplace here
Merov Linden
committed
LLKDUMemIn mem_in(raw_image.getData(),
raw_image.getDataSize(),
raw_image.getWidth(),
raw_image.getHeight(),
raw_image.getComponents(),
&siz);
base.setSize(raw_image.getWidth(), raw_image.getHeight(), raw_image.getComponents());
int num_components = raw_image.getComponents();
siz.set(Scomponents,0,0,num_components);
siz.set(Sdims,0,0,base.getHeight()); // Height of first image component
siz.set(Sdims,0,1,base.getWidth()); // Width of first image component
siz.set(Sprecision,0,0,8); // Image samples have original bit-depth of 8
siz.set(Ssigned,0,0,false); // Image samples are originally unsigned
Merov Linden
committed
kdu_params *siz_ref = &siz;
siz_ref->finalize();
siz_params transformed_siz; // Use this one to construct code-stream
Merov Linden
committed
transformed_siz.copy_from(&siz,-1,-1,-1,0,transpose,false,false);
Merov Linden
committed
// Construct the `kdu_codestream' object and parse all remaining arguments
Merov Linden
committed
U32 max_output_size = base.getWidth()*base.getHeight()*base.getComponents();
if (max_output_size < 1000)
{
max_output_size = 1000;
}
U8 *output_buffer = new U8[max_output_size];
U32 output_size = max_output_size; // gets modified
LLKDUMemTarget output(output_buffer, output_size, base.getWidth()*base.getHeight()*base.getComponents());
if (output_size > max_output_size)
{
Merov Linden
committed
llerrs << llformat("LLImageJ2C::encode output_size(%d) > max_output_size(%d)", output_size,max_output_size) << llendl;
Merov Linden
committed
}
kdu_codestream codestream;
codestream.create(&transformed_siz,&output);
if (comment_text)
{
// Set the comments for the codestream
kdu_codestream_comment comment = codestream.add_comment();
comment.put_text(comment_text);
}
// Set codestream options
int num_layer_specs = 0;
kdu_long layer_bytes[64];
U32 max_bytes = 0;
Merov Linden
committed
if (num_components >= 3)
Merov Linden
committed
{
Merov Linden
committed
// Note that we always use YCC and not YUV
// *TODO: Verify this doesn't screws up reversible textures (like sculpties) as YCC is not reversible but YUV is...
Merov Linden
committed
set_default_colour_weights(codestream.access_siz());
}
if (reversible)
{
Merov Linden
committed
// If we're doing reversible (i.e. lossless compression), assumes we're not using quality layers.
Merov Linden
committed
// Yes, I know this is incorrect!
Merov Linden
committed
// *TODO: Indeed, this is incorrect and unecessary... Try using the regular layer setting...
Merov Linden
committed
codestream.access_siz()->parse_string("Creversible=yes");
codestream.access_siz()->parse_string("Clayers=1");
num_layer_specs = 1;
layer_bytes[0] = 0;
}
else
{
// Rate is the argument passed into the LLImageJ2C which
// specifies the target compression rate. The default is 8:1.
// Possibly if max_bytes < 500, we should just use the default setting?
Merov Linden
committed
// *TODO: mRate is actually always 8:1 in the viewer. Test different values. Also force to reversible for small (< 500 bytes) textures.
Merov Linden
committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
if (base.mRate != 0.f)
{
max_bytes = (U32)(base.mRate*base.getWidth()*base.getHeight()*base.getComponents());
}
else
{
max_bytes = (U32)(base.getWidth()*base.getHeight()*base.getComponents()*0.125);
}
const U32 min_bytes = FIRST_PACKET_SIZE;
if (max_bytes > min_bytes)
{
U32 i;
// This code is where we specify the target number of bytes for
// each layer. Not sure if we should do this for small images
// or not. The goal is to have this roughly align with
// different quality levels that we decode at.
for (i = min_bytes; i < max_bytes; i*=4)
{
if (i == min_bytes * 4)
{
i = 2000;
}
layer_bytes[num_layer_specs] = i;
num_layer_specs++;
}
layer_bytes[num_layer_specs] = max_bytes;
num_layer_specs++;
std::string layer_string = llformat("Clayers=%d",num_layer_specs);
codestream.access_siz()->parse_string(layer_string.c_str());
}
else
{
layer_bytes[0] = min_bytes;
num_layer_specs = 1;
std::string layer_string = llformat("Clayers=%d",num_layer_specs);
codestream.access_siz()->parse_string(layer_string.c_str());
}
}
Merov Linden
committed
// *TODO : Add precinct specification here
//std::string precincts_string = llformat("Cprecincts={128,128}");
//codestream.access_siz()->parse_string(precincts_string.c_str());
Merov Linden
committed
codestream.access_siz()->finalize_all();
codestream.change_appearance(transpose,vflip,hflip);
// Now we are ready for sample data processing.
Merov Linden
committed
kdc_flow_control *tile = new kdc_flow_control(&mem_in,codestream);
bool done = false;
while (!done)
{
// Process line by line
if (tile->advance_components())
{
tile->process_components();
}
else
{
done = true;
}
}
// Produce the compressed output
Merov Linden
committed
codestream.flush(layer_bytes,num_layer_specs);
Merov Linden
committed
// Cleanup
Merov Linden
committed
delete tile;
Merov Linden
committed
codestream.destroy();
// Now that we're done encoding, create the new data buffer for the compressed
// image and stick it there.
base.copyData(output_buffer, output_size);
base.updateData(); // set width, height
delete[] output_buffer;
}
catch(const char* msg)
{
base.setLastError(ll_safe_string(msg));
return FALSE;
}
catch( ... )
{
base.setLastError( "Unknown J2C error" );
return FALSE;
}
return TRUE;
}
BOOL LLImageJ2CKDU::getMetadata(LLImageJ2C &base)
{
// *FIX: kdu calls our callback function if there's an error, and
Merov Linden
committed
// then bombs. To regain control, we throw an exception, and
Merov Linden
committed
// catch it here.
try
{
setupCodeStream(base, FALSE, MODE_FAST);
return TRUE;
}
Merov Linden
committed
catch (const char* msg)
Merov Linden
committed
{
base.setLastError(ll_safe_string(msg));
return FALSE;
}
Merov Linden
committed
catch (...)
Merov Linden
committed
{
base.setLastError( "Unknown J2C error" );
return FALSE;
}
}
void set_default_colour_weights(kdu_params *siz)
{
kdu_params *cod = siz->access_cluster(COD_params);
assert(cod != NULL);
bool can_use_ycc = true;
Merov Linden
committed
bool rev0 = false;
int depth0 = 0, sub_x0 = 1, sub_y0 = 1;
for (int c = 0; c < 3; c++)
Merov Linden
committed
{
Merov Linden
committed
int depth = 0; siz->get(Sprecision,c,0,depth);
int sub_y = 1; siz->get(Ssampling,c,0,sub_y);
int sub_x = 1; siz->get(Ssampling,c,1,sub_x);
Merov Linden
committed
kdu_params *coc = cod->access_relation(-1,c);
Merov Linden
committed
bool rev = false; coc->get(Creversible,0,0,rev);
Merov Linden
committed
if (c == 0)
Merov Linden
committed
{
rev0 = rev; depth0 = depth; sub_x0 = sub_x; sub_y0 = sub_y;
}
else if ((rev != rev0) || (depth != depth0) ||
(sub_x != sub_x0) || (sub_y != sub_y0))
{
Merov Linden
committed
can_use_ycc = false;
Merov Linden
committed
}
Merov Linden
committed
}
if (!can_use_ycc)
Merov Linden
committed
{
Merov Linden
committed
return;
Merov Linden
committed
}
Merov Linden
committed
bool use_ycc;
if (!cod->get(Cycc,0,0,use_ycc))
Merov Linden
committed
{
Merov Linden
committed
cod->set(Cycc,0,0,use_ycc=true);
Merov Linden
committed
}
Merov Linden
committed
if (!use_ycc)
Merov Linden
committed
{
Merov Linden
committed
return;
Merov Linden
committed
}
Merov Linden
committed
float weight;
Merov Linden
committed
if (cod->get(Clev_weights,0,0,weight) || cod->get(Cband_weights,0,0,weight))
{
// Weights already specified explicitly -> nothing to do
return;
}
Merov Linden
committed
Merov Linden
committed
// These example weights are adapted from numbers generated by Marcus Nadenau
// at EPFL, for a viewing distance of 15 cm and a display resolution of
// 300 DPI.
Merov Linden
committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
cod->parse_string("Cband_weights:C0="
"{0.0901},{0.2758},{0.2758},"
"{0.7018},{0.8378},{0.8378},{1}");
cod->parse_string("Cband_weights:C1="
"{0.0263},{0.0863},{0.0863},"
"{0.1362},{0.2564},{0.2564},"
"{0.3346},{0.4691},{0.4691},"
"{0.5444},{0.6523},{0.6523},"
"{0.7078},{0.7797},{0.7797},{1}");
cod->parse_string("Cband_weights:C2="
"{0.0773},{0.1835},{0.1835},"
"{0.2598},{0.4130},{0.4130},"
"{0.5040},{0.6464},{0.6464},"
"{0.7220},{0.8254},{0.8254},"
"{0.8769},{0.9424},{0.9424},{1}");
}
/******************************************************************************/
/* transfer_bytes */
/******************************************************************************/
void transfer_bytes(kdu_byte *dest, kdu_line_buf &src, int gap, int precision)
/* Transfers source samples from the supplied line buffer into the output
byte buffer, spacing successive output samples apart by `gap' bytes
(to allow for interleaving of colour components). The function performs
all necessary level shifting, type conversion, rounding and truncation. */
{
int width = src.get_width();
if (src.get_buf32() != NULL)
{ // Decompressed samples have a 32-bit representation (integer or float)
assert(precision >= 8); // Else would have used 16 bit representation
kdu_sample32 *sp = src.get_buf32();
if (!src.is_absolute())
{ // Transferring normalized floating point data.
float scale16 = (float)(1<<16);
kdu_int32 val;
for (; width > 0; width--, sp++, dest+=gap)
{
val = (kdu_int32)(sp->fval*scale16);
val = (val+128)>>8; // May be faster than true rounding
val += 128;
if (val & ((-1)<<8))
{
Merov Linden
committed
val = (val < 0 ? 0 : 255);
Merov Linden
committed
}
*dest = (kdu_byte) val;
}
}
else
{ // Transferring 32-bit absolute integers.
kdu_int32 val;
kdu_int32 downshift = precision-8;
kdu_int32 offset = (1<<downshift)>>1;
for (; width > 0; width--, sp++, dest+=gap)
{
val = sp->ival;
val = (val+offset)>>downshift;
val += 128;
if (val & ((-1)<<8))
{
Merov Linden
committed
val = (val < 0 ? 0 : 255);
Merov Linden
committed
}
*dest = (kdu_byte) val;
}
}
}
else
{ // Source data is 16 bits.
kdu_sample16 *sp = src.get_buf16();
if (!src.is_absolute())
{ // Transferring 16-bit fixed point quantities
kdu_int16 val;
if (precision >= 8)
{ // Can essentially ignore the bit-depth.
for (; width > 0; width--, sp++, dest+=gap)
{
val = sp->ival;
val += (1<<(KDU_FIX_POINT-8))>>1;
val >>= (KDU_FIX_POINT-8);
val += 128;
if (val & ((-1)<<8))
{
Merov Linden
committed
val = (val < 0 ? 0 : 255);
Merov Linden
committed
}
*dest = (kdu_byte) val;
}
}
else
{ // Need to force zeros into one or more least significant bits.
kdu_int16 downshift = KDU_FIX_POINT-precision;
kdu_int16 upshift = 8-precision;
kdu_int16 offset = 1<<(downshift-1);
for (; width > 0; width--, sp++, dest+=gap)
{
val = sp->ival;
val = (val+offset)>>downshift;
val <<= upshift;
val += 128;
if (val & ((-1)<<8))
{
Merov Linden
committed
val = (val < 0 ? 0 : 256 - (1<<upshift));
Merov Linden
committed
}
*dest = (kdu_byte) val;
}
}
}
else
{ // Transferring 16-bit absolute integers.
kdu_int16 val;
if (precision >= 8)
{
kdu_int16 downshift = precision-8;
kdu_int16 offset = (1<<downshift)>>1;
for (; width > 0; width--, sp++, dest+=gap)
{
val = sp->ival;
val = (val+offset)>>downshift;
val += 128;
if (val & ((-1)<<8))
{
Merov Linden
committed
val = (val < 0 ? 0 : 255);
Merov Linden
committed
}
*dest = (kdu_byte) val;
}
}
else
{
kdu_int16 upshift = 8-precision;
for (; width > 0; width--, sp++, dest+=gap)
{
val = sp->ival;
val <<= upshift;
val += 128;
if (val & ((-1)<<8))
{
Merov Linden
committed
val = (val < 0 ? 0 : 256 - (1<<upshift));
Merov Linden
committed
}
*dest = (kdu_byte) val;
}
}
}
}
}
LLKDUDecodeState::LLKDUDecodeState(kdu_tile tile, kdu_byte *buf, S32 row_gap)
{
S32 c;
mTile = tile;
mBuf = buf;
mRowGap = row_gap;
mNumComponents = tile.get_num_components();
Merov Linden
committed
llassert(mNumComponents <= 4);
Merov Linden
committed
mUseYCC = tile.get_ycc();
Merov Linden
committed
for (c = 0; c < 4; ++c)
Merov Linden
committed
{
mReversible[c] = false;
mBitDepths[c] = 0;
}
// Open tile-components and create processing engines and resources
Merov Linden
committed
for (c = 0; c < mNumComponents; c++)
Merov Linden
committed
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
{
mComps[c] = mTile.access_component(c);
mReversible[c] = mComps[c].get_reversible();
mBitDepths[c] = mComps[c].get_bit_depth();
kdu_resolution res = mComps[c].access_resolution(); // Get top resolution
kdu_dims comp_dims; res.get_dims(comp_dims);
if (c == 0)
{
mDims = comp_dims;
}
else
{
llassert(mDims == comp_dims); // Safety check; the caller has ensured this
}
bool use_shorts = (mComps[c].get_bit_depth(true) <= 16);
mLines[c].pre_create(&mAllocator,mDims.size.x,mReversible[c],use_shorts);
if (res.which() == 0) // No DWT levels used
{
mEngines[c] = kdu_decoder(res.access_subband(LL_BAND),&mAllocator,use_shorts);
}
else
{
mEngines[c] = kdu_synthesis(res,&mAllocator,use_shorts);
}
}
mAllocator.finalize(); // Actually creates buffering resources
Merov Linden
committed
for (c = 0; c < mNumComponents; c++)
Merov Linden
committed
{
mLines[c].create(); // Grabs resources from the allocator.
}
}
LLKDUDecodeState::~LLKDUDecodeState()
{
// Cleanup
Merov Linden
committed
for (S32 c = 0; c < mNumComponents; c++)
Merov Linden
committed
{
mEngines[c].destroy(); // engines are interfaces; no default destructors
}
mTile.close();
}
BOOL LLKDUDecodeState::processTileDecode(F32 decode_time, BOOL limit_time)
/* Decompresses a tile, writing the data into the supplied byte buffer.
The buffer contains interleaved image components, if there are any.
Although you may think of the buffer as belonging entirely to this tile,
the `buf' pointer may actually point into a larger buffer representing
multiple tiles. For this reason, `row_gap' is needed to identify the
separation between consecutive rows in the real buffer. */
{
S32 c;
// Now walk through the lines of the buffer, recovering them from the
// relevant tile-component processing engines.
LLTimer decode_timer;
while (mDims.size.y--)
{
Merov Linden
committed
for (c = 0; c < mNumComponents; c++)
Merov Linden
committed
{
mEngines[c].pull(mLines[c],true);
}
if ((mNumComponents >= 3) && mUseYCC)
{
kdu_convert_ycc_to_rgb(mLines[0],mLines[1],mLines[2]);
}
Merov Linden
committed
for (c = 0; c < mNumComponents; c++)
Merov Linden
committed
{
transfer_bytes(mBuf+c,mLines[c],mNumComponents,mBitDepths[c]);
}
mBuf += mRowGap;
if (mDims.size.y % 10)
{
if (limit_time && decode_timer.getElapsedTimeF32() > decode_time)
{
return FALSE;
}
}
}
return TRUE;
}