Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/**
* @file llleap_test.cpp
* @author Nat Goodspeed
* @date 2012-02-21
* @brief Test for llleap.
*
* $LicenseInfo:firstyear=2012&license=viewerlgpl$
* Copyright (c) 2012, Linden Research, Inc.
* $/LicenseInfo$
*/
// Precompiled header
#include "linden_common.h"
// associated header
#include "llleap.h"
// STL headers
// std headers
// external library headers
#include <boost/assign/list_of.hpp>
#include <boost/lambda/lambda.hpp>
#include <boost/foreach.hpp>
// other Linden headers
#include "../test/lltut.h"
#include "../test/namedtempfile.h"
#include "../test/manageapr.h"
#include "../test/catch_and_store_what_in.h"
#include "wrapllerrs.h"
#include "llevents.h"
#include "llprocess.h"
#include "stringize.h"
#include "StringVec.h"
using boost::assign::list_of;
static ManageAPR manager;
StringVec sv(const StringVec& listof) { return listof; }
#if defined(LL_WINDOWS)
#define sleep(secs) _sleep((secs) * 1000)
#endif
const size_t BUFFERED_LENGTH = 1024*1024; // try wrangling a megabyte of data
void waitfor(const std::vector<LLLeap*>& instances, int timeout=60)
int i;
for (i = 0; i < timeout; ++i)
{
// Every iteration, test whether any of the passed LLLeap instances
// still exist (are still running).
std::vector<LLLeap*>::const_iterator vli(instances.begin()), vlend(instances.end());
for ( ; vli != vlend; ++vli)
{
// getInstance() returns NULL if it's terminated/gone, non-NULL if
// it's still running
if (LLLeap::getInstance(*vli))
break;
}
// If we made it through all of 'instances' without finding one that's
// still running, we're done.
if (vli == vlend)
return;
// Found an instance that's still running. Wait and pump LLProcess.
sleep(1);
LLEventPumps::instance().obtain("mainloop").post(LLSD());
}
tut::ensure("timed out without terminating", i < timeout);
}
void waitfor(LLLeap* instance, int timeout=60)
{
std::vector<LLLeap*> instances;
instances.push_back(instance);
waitfor(instances, timeout);
}
/*****************************************************************************
* TUT
*****************************************************************************/
namespace tut
{
struct llleap_data
{
llleap_data():
reader(".py",
// This logic is adapted from vita.viewerclient.receiveEvent()
boost::lambda::_1 <<
"import os\n"
"import sys\n"
// Don't forget that this Python script is written to some
// temp directory somewhere! Its __file__ is useless in
// finding indra/lib/python. Use our __FILE__, with
// raw-string syntax to deal with Windows pathnames.
"mydir = os.path.dirname(r'" << __FILE__ << "')\n"
"try:\n"
" from llbase import llsd\n"
"except ImportError:\n"
// We expect mydir to be .../indra/llcommon/tests.
" sys.path.insert(0,\n"
" os.path.join(mydir, os.pardir, os.pardir, 'lib', 'python'))\n"
" from indra.base import llsd\n"
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"LEFTOVER = ''\n"
"class ProtocolError(Exception):\n"
" pass\n"
"def get():\n"
" global LEFTOVER\n"
" hdr = LEFTOVER\n"
" if ':' not in hdr:\n"
" hdr += sys.stdin.read(20)\n"
" if not hdr:\n"
" sys.exit(0)\n"
" parts = hdr.split(':', 1)\n"
" if len(parts) != 2:\n"
" raise ProtocolError('Expected len:data, got %r' % hdr)\n"
" try:\n"
" length = int(parts[0])\n"
" except ValueError:\n"
" raise ProtocolError('Non-numeric len %r' % parts[0])\n"
" del parts[0]\n"
" received = len(parts[0])\n"
" while received < length:\n"
" parts.append(sys.stdin.read(length - received))\n"
" received += len(parts[-1])\n"
" if received > length:\n"
" excess = length - received\n"
" LEFTOVER = parts[-1][excess:]\n"
" parts[-1] = parts[-1][:excess]\n"
" data = ''.join(parts)\n"
" assert len(data) == length\n"
" return llsd.parse(data)\n"
"\n"
"# deal with initial stdin message\n"
// this will throw if the initial write to stdin doesn't
// follow len:data protocol, or if we couldn't find 'pump'
// in the dict
"_reply = get()['pump']\n"
"\n"
"def replypump():\n"
" return _reply\n"
"\n"
"def put(req):\n"
" sys.stdout.write(':'.join((str(len(req)), req)))\n"
" sys.stdout.flush()\n"
"\n"
"def send(pump, data):\n"
" put(llsd.format_notation(dict(pump=pump, data=data)))\n"
"def request(pump, data):\n"
" # we expect 'data' is a dict\n"
" data['reply'] = _reply\n"
" send(pump, data)\n"),
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// Get the actual pathname of the NamedExtTempFile and trim off
// the ".py" extension. (We could cache reader.getName() in a
// separate member variable, but I happen to know getName() just
// returns a NamedExtTempFile member rather than performing any
// computation, so I don't mind calling it twice.) Then take the
// basename.
reader_module(LLProcess::basename(
reader.getName().substr(0, reader.getName().length()-3))),
pPYTHON(getenv("PYTHON")),
PYTHON(pPYTHON? pPYTHON : "")
{
ensure("Set PYTHON to interpreter pathname", pPYTHON);
}
NamedExtTempFile reader;
const std::string reader_module;
const char* pPYTHON;
const std::string PYTHON;
};
typedef test_group<llleap_data> llleap_group;
typedef llleap_group::object object;
llleap_group llleapgrp("llleap");
template<> template<>
void object::test<1>()
{
set_test_name("multiple LLLeap instances");
NamedTempFile script("py",
"import time\n"
"time.sleep(1)\n");
std::vector<LLLeap*> instances;
instances.push_back(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
instances.push_back(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
// In this case we're simply establishing that two LLLeap instances
// can coexist without throwing exceptions or bombing in any other
// way. Wait for them to terminate.
waitfor(instances);
}
template<> template<>
void object::test<2>()
{
set_test_name("stderr to log");
NamedTempFile script("py",
"import sys\n"
"sys.stderr.write('''Hello from Python!\n"
"note partial line''')\n");
CaptureLog log(LLError::LEVEL_INFO);
waitfor(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
log.messageWith("Hello from Python!");
log.messageWith("note partial line");
}
template<> template<>
void object::test<3>()
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
{
set_test_name("bad stdout protocol");
NamedTempFile script("py",
"print 'Hello from Python!'\n");
CaptureLog log(LLError::LEVEL_WARN);
waitfor(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
ensure_contains("error log line",
log.messageWith("invalid protocol"), "Hello from Python!");
}
template<> template<>
void object::test<4>()
{
set_test_name("leftover stdout");
NamedTempFile script("py",
"import sys\n"
// note lack of newline
"sys.stdout.write('Hello from Python!')\n");
CaptureLog log(LLError::LEVEL_WARN);
waitfor(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
ensure_contains("error log line",
log.messageWith("Discarding"), "Hello from Python!");
}
template<> template<>
void object::test<5>()
{
set_test_name("bad stdout len prefix");
NamedTempFile script("py",
"import sys\n"
"sys.stdout.write('5a2:something')\n");
CaptureLog log(LLError::LEVEL_WARN);
waitfor(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
ensure_contains("error log line",
log.messageWith("invalid protocol"), "5a2:");
}
template<> template<>
void object::test<6>()
{
set_test_name("empty plugin vector");
std::string threw;
try
{
LLLeap::create("empty", StringVec());
}
CATCH_AND_STORE_WHAT_IN(threw, LLLeap::Error)
ensure_contains("LLLeap::Error", threw, "no plugin");
// try the suppress-exception variant
ensure("bad launch returned non-NULL", ! LLLeap::create("empty", StringVec(), false));
}
template<> template<>
void object::test<7>()
{
set_test_name("bad launch");
// Synthesize bogus executable name
std::string BADPYTHON(PYTHON.substr(0, PYTHON.length()-1) + "x");
CaptureLog log;
std::string threw;
try
{
LLLeap::create("bad exe", BADPYTHON);
}
CATCH_AND_STORE_WHAT_IN(threw, LLLeap::Error)
ensure_contains("LLLeap::create() didn't throw", threw, "failed");
log.messageWith("failed");
log.messageWith(BADPYTHON);
// try the suppress-exception variant
ensure("bad launch returned non-NULL", ! LLLeap::create("bad exe", BADPYTHON, false));
}
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// Generic self-contained listener: derive from this and override its
// call() method, then tell somebody to post on the pump named getName().
// Control will reach your call() override.
struct ListenerBase
{
// Pass the pump name you want; will tweak for uniqueness.
ListenerBase(const std::string& name):
mPump(name, true)
{
mPump.listen(name, boost::bind(&ListenerBase::call, this, _1));
}
virtual bool call(const LLSD& request)
{
return false;
}
LLEventPump& getPump() { return mPump; }
const LLEventPump& getPump() const { return mPump; }
std::string getName() const { return mPump.getName(); }
void post(const LLSD& data) { mPump.post(data); }
LLEventStream mPump;
};
// Mimic a dummy little LLEventAPI that merely sends a reply back to its
// requester on the "reply" pump.
struct AckAPI: public ListenerBase
AckAPI(): ListenerBase("AckAPI") {}
virtual bool call(const LLSD& request)
LLEventPumps::instance().obtain(request["reply"]).post("ack");
return false;
};
// Give LLLeap script a way to post success/failure.
struct Result: public ListenerBase
{
Result(): ListenerBase("Result") {}
virtual bool call(const LLSD& request)
mData = request;
return false;
}
void ensure() const
{
tut::ensure(std::string("never posted to ") + getName(), mData.isDefined());
// Post an empty string for success, non-empty string is failure message.
tut::ensure(mData, mData.asString().empty());
}
LLSD mData;
};
template<> template<>
void object::test<8>()
{
set_test_name("round trip");
AckAPI api;
Result result;
NamedTempFile script("py",
boost::lambda::_1 <<
"from " << reader_module << " import *\n"
// make a request on our little API
"request(pump='" << api.getName() << "', data={})\n"
// wait for its response
"resp = get()\n"
"result = '' if resp == dict(pump=replypump(), data='ack')\\\n"
" else 'bad: ' + str(resp)\n"
"send(pump='" << result.getName() << "', data=result)\n");
waitfor(LLLeap::create(get_test_name(), sv(list_of(PYTHON)(script.getName()))));
result.ensure();
struct ReqIDAPI: public ListenerBase
{
ReqIDAPI(): ListenerBase("ReqIDAPI") {}
virtual bool call(const LLSD& request)
{
// free function from llevents.h
sendReply(LLSD(), request);
return false;
}
};
template<> template<>
void object::test<9>()
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
{
set_test_name("many small messages");
// It's not clear to me whether there's value in iterating many times
// over a send/receive loop -- I don't think that will exercise any
// interesting corner cases. This test first sends a large number of
// messages, then receives all the responses. The intent is to ensure
// that some of that data stream crosses buffer boundaries, loop
// iterations etc. in OS pipes and the LLLeap/LLProcess implementation.
ReqIDAPI api;
Result result;
NamedTempFile script("py",
boost::lambda::_1 <<
"import sys\n"
"from " << reader_module << " import *\n"
// Note that since reader imports llsd, this
// 'import *' gets us llsd too.
"sample = llsd.format_notation(dict(pump='" <<
api.getName() << "', data=dict(reqid=999999, reply=replypump())))\n"
// The whole packet has length prefix too: "len:data"
"samplen = len(str(len(sample))) + 1 + len(sample)\n"
// guess how many messages it will take to
// accumulate BUFFERED_LENGTH
"count = int(" << BUFFERED_LENGTH << "/samplen)\n"
"print >>sys.stderr, 'Sending %s requests' % count\n"
"for i in xrange(count):\n"
" request('" << api.getName() << "', dict(reqid=i))\n"
// The assumption in this specific test that
// replies will arrive in the same order as
// requests is ONLY valid because the API we're
// invoking sends replies instantly. If the API
// had to wait for some external event before
// sending its reply, replies could arrive in
// arbitrary order, and we'd have to tick them
// off from a set.
"result = ''\n"
"for i in xrange(count):\n"
" resp = get()\n"
" if resp['data']['reqid'] != i:\n"
" result = 'expected reqid=%s in %s' % (i, resp)\n"
" break\n"
"send(pump='" << result.getName() << "', data=result)\n");
waitfor(LLLeap::create(get_test_name(), sv(list_of(PYTHON)(script.getName()))),
300); // needs more realtime than most tests
result.ensure();
}
template<> template<>
void object::test<10>()
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
{
set_test_name("very large message");
ReqIDAPI api;
Result result;
NamedTempFile script("py",
boost::lambda::_1 <<
"import sys\n"
"from " << reader_module << " import *\n"
// Generate a very large string value.
"desired = int(sys.argv[1])\n"
// 7 chars per item: 6 digits, 1 comma
"count = int((desired - 50)/7)\n"
"large = ''.join('%06d,' % i for i in xrange(count))\n"
// Pass 'large' as reqid because we know the API
// will echo reqid, and we want to receive it back.
"request('" << api.getName() << "', dict(reqid=large))\n"
"resp = get()\n"
"echoed = resp['data']['reqid']\n"
"if echoed == large:\n"
" send('" << result.getName() << "', '')\n"
" sys.exit(0)\n"
// Here we know echoed did NOT match; try to find where
"for i in xrange(count):\n"
" start = 7*i\n"
" end = 7*(i+1)\n"
" if end > len(echoed)\\\n"
" or echoed[start:end] != large[start:end]:\n"
" send('" << result.getName() << "',\n"
" 'at offset %s, expected %r but got %r' %\n"
" (start, large[start:end], echoed[start:end]))\n"
"sys.exit(1)\n");
waitfor(LLLeap::create(get_test_name(),
sv(list_of
(PYTHON)
(script.getName())
(stringize(BUFFERED_LENGTH)))));
result.ensure();
}
// TODO:
} // namespace tut