-
David Parks authored
* SL-19203 WIP -- Integrate SSR with reflection probes. Decruft LLRenderTarget. * SL-19203 WIP -- Re-integrate SSR. Incidental decruft. * SL-19203 WIP -- SSR frame delta correction (still broken for Z) * SL-19203 WIP -- SSR frame delta Z fix * SL-19203 WIP -- Make SSR toggleable again and disable SSR in cube snapshots. * SL-19203 WIP -- Soften sphere probe transitions and fix reflections on void water (make fallback probe a simple terrain+water+sky probe). Remove parallax correction for automatic probes to reduce artifacts. * SL-19203 Tune probe blending. * SL-19203 Cleanup.
David Parks authored* SL-19203 WIP -- Integrate SSR with reflection probes. Decruft LLRenderTarget. * SL-19203 WIP -- Re-integrate SSR. Incidental decruft. * SL-19203 WIP -- SSR frame delta correction (still broken for Z) * SL-19203 WIP -- SSR frame delta Z fix * SL-19203 WIP -- Make SSR toggleable again and disable SSR in cube snapshots. * SL-19203 WIP -- Soften sphere probe transitions and fix reflections on void water (make fallback probe a simple terrain+water+sky probe). Remove parallax correction for automatic probes to reduce artifacts. * SL-19203 Tune probe blending. * SL-19203 Cleanup.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
llreflectionmapmanager.cpp 27.30 KiB
/**
* @file llreflectionmapmanager.cpp
* @brief LLReflectionMapManager class implementation
*
* $LicenseInfo:firstyear=2022&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2022, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "llreflectionmapmanager.h"
#include "llviewercamera.h"
#include "llspatialpartition.h"
#include "llviewerregion.h"
#include "pipeline.h"
#include "llviewershadermgr.h"
#include "llviewercontrol.h"
#include "llenvironment.h"
#include "llstartup.h"
extern BOOL gCubeSnapshot;
extern BOOL gTeleportDisplay;
static void touch_default_probe(LLReflectionMap* probe)
{
LLVector3 origin = LLViewerCamera::getInstance()->getOrigin();
origin.mV[2] += 64.f;
probe->mOrigin.load3(origin.mV);
}
LLReflectionMapManager::LLReflectionMapManager()
{
initCubeFree();
}
void LLReflectionMapManager::initCubeFree()
{
for (int i = 1; i < LL_MAX_REFLECTION_PROBE_COUNT; ++i)
{
mCubeFree[i] = true;
}
// cube index 0 is reserved for the fallback probe
mCubeFree[0] = false;
}
struct CompareProbeDistance
{
bool operator()(const LLPointer<LLReflectionMap>& lhs, const LLPointer<LLReflectionMap>& rhs)
{
return lhs->mDistance < rhs->mDistance;
}
};
// helper class to seed octree with probes
void LLReflectionMapManager::update()
{
if (!LLPipeline::sReflectionProbesEnabled || gTeleportDisplay || LLStartUp::getStartupState() < STATE_PRECACHE)
{
return;
}
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
llassert(!gCubeSnapshot); // assert a snapshot is not in progress
if (LLAppViewer::instance()->logoutRequestSent())
{
return;
}
initReflectionMaps();
if (!mRenderTarget.isComplete())
{
U32 color_fmt = GL_RGB16F;
U32 targetRes = LL_REFLECTION_PROBE_RESOLUTION * 2; // super sample
mRenderTarget.allocate(targetRes, targetRes, color_fmt, true);
}
if (mMipChain.empty())
{
U32 res = LL_REFLECTION_PROBE_RESOLUTION;
U32 count = log2((F32)res) + 0.5f;
mMipChain.resize(count);
for (int i = 0; i < count; ++i)
{
mMipChain[i].allocate(res, res, GL_RGBA16F);
res /= 2;
}
}
if (mDefaultProbe.isNull())
{
mDefaultProbe = addProbe();
mDefaultProbe->mDistance = -4096.f; // hack to make sure the default probe is always first in sort order
mDefaultProbe->mRadius = 4096.f;
touch_default_probe(mDefaultProbe);
}
LLVector4a camera_pos;
camera_pos.load3(LLViewerCamera::instance().getOrigin().mV);
// process kill list
for (auto& probe : mKillList)
{
auto const & iter = std::find(mProbes.begin(), mProbes.end(), probe);
if (iter != mProbes.end())
{
deleteProbe(iter - mProbes.begin());
}
}
mKillList.clear();
// process create list
for (auto& probe : mCreateList)
{
mProbes.push_back(probe);
}
mCreateList.clear();
if (mProbes.empty())
{
return;
}
bool did_update = false;
static LLCachedControl<S32> sDetail(gSavedSettings, "RenderReflectionProbeDetail", -1);
bool realtime = sDetail >= (S32)LLReflectionMapManager::DetailLevel::REALTIME;
LLReflectionMap* closestDynamic = nullptr;
LLReflectionMap* oldestProbe = nullptr;
if (mUpdatingProbe != nullptr)
{
did_update = true;
doProbeUpdate();
}
//LL_INFOS() << mProbes.size() << LL_ENDL;
for (int i = 0; i < mProbes.size(); ++i)
{
LLReflectionMap* probe = mProbes[i];
if (probe->getNumRefs() == 1)
{ // no references held outside manager, delete this probe
deleteProbe(i);
--i;
continue;
}
probe->mProbeIndex = i;
LLVector4a d;
if (!did_update &&
i < mReflectionProbeCount &&
(oldestProbe == nullptr || probe->mLastUpdateTime < oldestProbe->mLastUpdateTime))
{
oldestProbe = probe;
}
if (realtime &&
closestDynamic == nullptr &&
probe->mCubeIndex != -1 &&
probe->getIsDynamic())
{
closestDynamic = probe;
}
if (probe != mDefaultProbe)
{
d.setSub(camera_pos, probe->mOrigin);
probe->mDistance = d.getLength3().getF32() - probe->mRadius;
}
}
if (realtime && closestDynamic != nullptr)
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmu - realtime");
// update the closest dynamic probe realtime
closestDynamic->autoAdjustOrigin();
for (U32 i = 0; i < 6; ++i)
{
updateProbeFace(closestDynamic, i);
}
}
// switch to updating the next oldest probe
if (!did_update && oldestProbe != nullptr)
{
LLReflectionMap* probe = oldestProbe;
if (probe->mCubeIndex == -1)
{
probe->mCubeArray = mTexture;
probe->mCubeIndex = probe == mDefaultProbe ? 0 : allocateCubeIndex();
}
probe->autoAdjustOrigin();
mUpdatingProbe = probe;
doProbeUpdate();
}
// update distance to camera for all probes
std::sort(mProbes.begin(), mProbes.end(), CompareProbeDistance());
}
LLReflectionMap* LLReflectionMapManager::addProbe(LLSpatialGroup* group)
{
LLReflectionMap* probe = new LLReflectionMap();
probe->mGroup = group;
if (group)
{
probe->mOrigin = group->getOctreeNode()->getCenter();
}
if (gCubeSnapshot)
{ //snapshot is in progress, mProbes is being iterated over, defer insertion until next update
mCreateList.push_back(probe);
}
else
{
mProbes.push_back(probe);
}
return probe;
}
void LLReflectionMapManager::getReflectionMaps(std::vector<LLReflectionMap*>& maps)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
U32 count = 0;
U32 lastIdx = 0;
for (U32 i = 0; count < maps.size() && i < mProbes.size(); ++i)
{
mProbes[i]->mLastBindTime = gFrameTimeSeconds; // something wants to use this probe, indicate it's been requested
if (mProbes[i]->mCubeIndex != -1)
{
mProbes[i]->mProbeIndex = count;
maps[count++] = mProbes[i];
}
else
{
mProbes[i]->mProbeIndex = -1;
}
lastIdx = i;
}
// set remaining probe indices to -1
for (U32 i = lastIdx+1; i < mProbes.size(); ++i)
{
mProbes[i]->mProbeIndex = -1;
}
// null terminate list
if (count < maps.size())
{
maps[count] = nullptr;
}
}
LLReflectionMap* LLReflectionMapManager::registerSpatialGroup(LLSpatialGroup* group)
{
#if 1
if (group->getSpatialPartition()->mPartitionType == LLViewerRegion::PARTITION_VOLUME)
{
OctreeNode* node = group->getOctreeNode();
F32 size = node->getSize().getF32ptr()[0];
if (size >= 15.f && size <= 17.f)
{
return addProbe(group);
}
}
#endif
#if 0
if (group->getSpatialPartition()->mPartitionType == LLViewerRegion::PARTITION_TERRAIN)
{
OctreeNode* node = group->getOctreeNode();
F32 size = node->getSize().getF32ptr()[0];
if (size >= 15.f && size <= 17.f)
{
return addProbe(group);
}
}
#endif
return nullptr;
}
LLReflectionMap* LLReflectionMapManager::registerViewerObject(LLViewerObject* vobj)
{
llassert(vobj != nullptr);
LLReflectionMap* probe = new LLReflectionMap();
probe->mViewerObject = vobj;
probe->mOrigin.load3(vobj->getPositionAgent().mV);
if (gCubeSnapshot)
{ //snapshot is in progress, mProbes is being iterated over, defer insertion until next update
mCreateList.push_back(probe);
}
else
{
mProbes.push_back(probe);
}
return probe;
}
S32 LLReflectionMapManager::allocateCubeIndex()
{
for (int i = 0; i < mReflectionProbeCount; ++i)
{
if (mCubeFree[i])
{
mCubeFree[i] = false;
return i;
}
}
// no cubemaps free, steal one from the back of the probe list
for (int i = mProbes.size() - 1; i >= mReflectionProbeCount; --i)
{
if (mProbes[i]->mCubeIndex != -1)
{
S32 ret = mProbes[i]->mCubeIndex;
mProbes[i]->mCubeIndex = -1;
mProbes[i]->mCubeArray = nullptr;
return ret;
}
}
llassert(false); // should never fail to allocate, something is probably wrong with mCubeFree
return -1;
}
void LLReflectionMapManager::deleteProbe(U32 i)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
LLReflectionMap* probe = mProbes[i];
llassert(probe != mDefaultProbe);
if (probe->mCubeIndex != -1)
{ // mark the cube index used by this probe as being free
mCubeFree[probe->mCubeIndex] = true;
}
if (mUpdatingProbe == probe)
{
mUpdatingProbe = nullptr;
mUpdatingFace = 0;
}
// remove from any Neighbors lists
for (auto& other : probe->mNeighbors)
{
auto const & iter = std::find(other->mNeighbors.begin(), other->mNeighbors.end(), probe);
llassert(iter != other->mNeighbors.end());
other->mNeighbors.erase(iter);
}
mProbes.erase(mProbes.begin() + i);
}
void LLReflectionMapManager::doProbeUpdate()
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
llassert(mUpdatingProbe != nullptr);
updateProbeFace(mUpdatingProbe, mUpdatingFace);
if (++mUpdatingFace == 6)
{
updateNeighbors(mUpdatingProbe);
mUpdatingProbe = nullptr;
mUpdatingFace = 0;
}
}
void LLReflectionMapManager::updateProbeFace(LLReflectionMap* probe, U32 face)
{
// hacky hot-swap of camera specific render targets
gPipeline.mRT = &gPipeline.mAuxillaryRT;
if (probe == mDefaultProbe)
{
touch_default_probe(probe);
gPipeline.pushRenderTypeMask();
//only render sky, water, terrain, and clouds
gPipeline.andRenderTypeMask(LLPipeline::RENDER_TYPE_SKY, LLPipeline::RENDER_TYPE_WL_SKY,
LLPipeline::RENDER_TYPE_WATER, LLPipeline::RENDER_TYPE_CLOUDS, LLPipeline::RENDER_TYPE_TERRAIN, LLPipeline::END_RENDER_TYPES);
probe->update(mRenderTarget.getWidth(), face);
gPipeline.popRenderTypeMask();
}
else
{
probe->update(mRenderTarget.getWidth(), face);
}
gPipeline.mRT = &gPipeline.mMainRT;
S32 targetIdx = mReflectionProbeCount;
if (probe != mUpdatingProbe)
{ // this is the "realtime" probe that's updating every frame, use the secondary scratch space channel
targetIdx += 1;
}
gGL.setColorMask(true, true);
// downsample to placeholder map
{
LLGLDepthTest depth(GL_FALSE, GL_FALSE);
LLGLDisable cull(GL_CULL_FACE);
gReflectionMipProgram.bind();
gGL.matrixMode(gGL.MM_MODELVIEW);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(gGL.MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.flush();
U32 res = LL_REFLECTION_PROBE_RESOLUTION * 2;
S32 mips = log2((F32)LL_REFLECTION_PROBE_RESOLUTION) + 0.5f;
S32 diffuseChannel = gReflectionMipProgram.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, LLTexUnit::TT_TEXTURE);
S32 depthChannel = gReflectionMipProgram.enableTexture(LLShaderMgr::DEFERRED_DEPTH, LLTexUnit::TT_TEXTURE);
LLRenderTarget* screen_rt = &gPipeline.mAuxillaryRT.screen;
LLRenderTarget* depth_rt = &gPipeline.mAuxillaryRT.deferredScreen;
for (int i = 0; i < mMipChain.size(); ++i)
{
LL_PROFILE_GPU_ZONE("probe mip");
mMipChain[i].bindTarget();
if (i == 0)
{
gGL.getTexUnit(diffuseChannel)->bind(screen_rt);
}
else
{
gGL.getTexUnit(diffuseChannel)->bind(&(mMipChain[i - 1]));
}
gGL.getTexUnit(depthChannel)->bind(depth_rt, true);
static LLStaticHashedString resScale("resScale");
static LLStaticHashedString znear("znear");
static LLStaticHashedString zfar("zfar");
gReflectionMipProgram.uniform1f(resScale, (F32) (1 << i));
gReflectionMipProgram.uniform1f(znear, probe->getNearClip());
gReflectionMipProgram.uniform1f(zfar, MAX_FAR_CLIP);
gGL.begin(gGL.QUADS);
gGL.texCoord2f(0, 0);
gGL.vertex2f(-1, -1);
gGL.texCoord2f(1.f, 0);
gGL.vertex2f(1, -1);
gGL.texCoord2f(1.f, 1.f);
gGL.vertex2f(1, 1);
gGL.texCoord2f(0, 1.f);
gGL.vertex2f(-1, 1);
gGL.end();
gGL.flush();
res /= 2;
S32 mip = i - (mMipChain.size() - mips);
if (mip >= 0)
{
LL_PROFILE_GPU_ZONE("probe mip copy");
mTexture->bind(0);
//glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, probe->mCubeIndex * 6 + face, 0, 0, res, res);
glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, targetIdx * 6 + face, 0, 0, res, res);
//if (i == 0)
//{
//glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, mip, 0, 0, probe->mCubeIndex * 6 + face, 0, 0, res, res);
//}
mTexture->unbind();
}
mMipChain[i].flush();
}
gGL.popMatrix();
gGL.matrixMode(gGL.MM_MODELVIEW);
gGL.popMatrix();
gGL.getTexUnit(diffuseChannel)->unbind(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(depthChannel)->unbind(LLTexUnit::TT_TEXTURE);
gReflectionMipProgram.unbind();
}
if (face == 5)
{
//generate radiance map
gRadianceGenProgram.bind();
mVertexBuffer->setBuffer();
S32 channel = gRadianceGenProgram.enableTexture(LLShaderMgr::REFLECTION_PROBES, LLTexUnit::TT_CUBE_MAP_ARRAY);
mTexture->bind(channel);
static LLStaticHashedString sSourceIdx("sourceIdx");
gRadianceGenProgram.uniform1i(sSourceIdx, targetIdx);
mMipChain[0].bindTarget();
U32 res = mMipChain[0].getWidth();
for (int i = 0; i < mMipChain.size(); ++i)
{
LL_PROFILE_GPU_ZONE("probe radiance gen");
static LLStaticHashedString sMipLevel("mipLevel");
static LLStaticHashedString sRoughness("roughness");
static LLStaticHashedString sWidth("u_width");
gRadianceGenProgram.uniform1f(sRoughness, (F32)i / (F32)(mMipChain.size() - 1));
gRadianceGenProgram.uniform1f(sMipLevel, i);
gRadianceGenProgram.uniform1i(sWidth, mMipChain[i].getWidth());
for (int cf = 0; cf < 6; ++cf)
{ // for each cube face
LLCoordFrame frame;
frame.lookAt(LLVector3(0, 0, 0), LLCubeMapArray::sClipToCubeLookVecs[cf], LLCubeMapArray::sClipToCubeUpVecs[cf]);
F32 mat[16];
frame.getOpenGLRotation(mat);
gGL.loadMatrix(mat);
mVertexBuffer->drawArrays(gGL.TRIANGLE_STRIP, 0, 4);
glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, i, 0, 0, probe->mCubeIndex * 6 + cf, 0, 0, res, res);
}
if (i != mMipChain.size() - 1)
{
res /= 2;
glViewport(0, 0, res, res);
}
}
gRadianceGenProgram.unbind();
//generate irradiance map
gIrradianceGenProgram.bind();
channel = gIrradianceGenProgram.enableTexture(LLShaderMgr::REFLECTION_PROBES, LLTexUnit::TT_CUBE_MAP_ARRAY);
mTexture->bind(channel);
gIrradianceGenProgram.uniform1i(sSourceIdx, targetIdx);
mVertexBuffer->setBuffer();
int start_mip = 0;
// find the mip target to start with based on irradiance map resolution
for (start_mip = 0; start_mip < mMipChain.size(); ++start_mip)
{
if (mMipChain[start_mip].getWidth() == LL_IRRADIANCE_MAP_RESOLUTION)
{
break;
}
}
//for (int i = start_mip; i < mMipChain.size(); ++i)
{
int i = start_mip;
LL_PROFILE_GPU_ZONE("probe irradiance gen");
glViewport(0, 0, mMipChain[i].getWidth(), mMipChain[i].getHeight());
for (int cf = 0; cf < 6; ++cf)
{ // for each cube face
LLCoordFrame frame;
frame.lookAt(LLVector3(0, 0, 0), LLCubeMapArray::sClipToCubeLookVecs[cf], LLCubeMapArray::sClipToCubeUpVecs[cf]);
F32 mat[16];
frame.getOpenGLRotation(mat);
gGL.loadMatrix(mat);
mVertexBuffer->drawArrays(gGL.TRIANGLE_STRIP, 0, 4);
S32 res = mMipChain[i].getWidth();
mIrradianceMaps->bind(channel);
glCopyTexSubImage3D(GL_TEXTURE_CUBE_MAP_ARRAY, i - start_mip, 0, 0, probe->mCubeIndex * 6 + cf, 0, 0, res, res);
mTexture->bind(channel);
}
}
mMipChain[0].flush();
gIrradianceGenProgram.unbind();
}
}
void LLReflectionMapManager::rebuild()
{
for (auto& probe : mProbes)
{
probe->mLastUpdateTime = 0.f;
}
}
void LLReflectionMapManager::shift(const LLVector4a& offset)
{
for (auto& probe : mProbes)
{
probe->mOrigin.add(offset);
}
}
void LLReflectionMapManager::updateNeighbors(LLReflectionMap* probe)
{
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
if (mDefaultProbe == probe)
{
return;
}
//remove from existing neighbors
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmun - clear");
for (auto& other : probe->mNeighbors)
{
auto const & iter = std::find(other->mNeighbors.begin(), other->mNeighbors.end(), probe);
llassert(iter != other->mNeighbors.end()); // <--- bug davep if this ever happens, something broke badly
other->mNeighbors.erase(iter);
}
probe->mNeighbors.clear();
}
// search for new neighbors
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmun - search");
for (auto& other : mProbes)
{
if (other != mDefaultProbe && other != probe)
{
if (probe->intersects(other))
{
probe->mNeighbors.push_back(other);
other->mNeighbors.push_back(probe);
}
}
}
}
}
void LLReflectionMapManager::updateUniforms()
{
if (!LLPipeline::sReflectionProbesEnabled)
{
return;
}
LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY;
// structure for packing uniform buffer object
// see class3/deferred/reflectionProbeF.glsl
struct ReflectionProbeData
{
LLMatrix4 refBox[LL_MAX_REFLECTION_PROBE_COUNT]; // object bounding box as needed
LLVector4 refSphere[LL_MAX_REFLECTION_PROBE_COUNT]; //origin and radius of refmaps in clip space
LLVector4 refParams[LL_MAX_REFLECTION_PROBE_COUNT]; //extra parameters (currently only ambiance)
GLint refIndex[LL_MAX_REFLECTION_PROBE_COUNT][4];
GLint refNeighbor[4096];
GLint refmapCount;
};
mReflectionMaps.resize(mReflectionProbeCount);
getReflectionMaps(mReflectionMaps);
ReflectionProbeData rpd;
// load modelview matrix into matrix 4a
LLMatrix4a modelview;
modelview.loadu(gGLModelView);
LLVector4a oa; // scratch space for transformed origin
S32 count = 0;
U32 nc = 0; // neighbor "cursor" - index into refNeighbor to start writing the next probe's list of neighbors
LLEnvironment& environment = LLEnvironment::instance();
LLSettingsSky::ptr_t psky = environment.getCurrentSky();
F32 minimum_ambiance = psky->getTotalReflectionProbeAmbiance();
F32 ambscale = gCubeSnapshot ? 0.5f : 1.f;
for (auto* refmap : mReflectionMaps)
{
if (refmap == nullptr)
{
break;
}
llassert(refmap->mProbeIndex == count);
llassert(mReflectionMaps[refmap->mProbeIndex] == refmap);
llassert(refmap->mCubeIndex >= 0); // should always be true, if not, getReflectionMaps is bugged
{
//LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmsu - refSphere");
modelview.affineTransform(refmap->mOrigin, oa);
rpd.refSphere[count].set(oa.getF32ptr());
rpd.refSphere[count].mV[3] = refmap->mRadius;
}
rpd.refIndex[count][0] = refmap->mCubeIndex;
llassert(nc % 4 == 0);
rpd.refIndex[count][1] = nc / 4;
rpd.refIndex[count][3] = refmap->mPriority;
// for objects that are reflection probes, use the volume as the influence volume of the probe
// only possibile influence volumes are boxes and spheres, so detect boxes and treat everything else as spheres
if (refmap->getBox(rpd.refBox[count]))
{ // negate priority to indicate this probe has a box influence volume
rpd.refIndex[count][3] = -rpd.refIndex[count][3];
}
rpd.refParams[count].set(llmax(minimum_ambiance, refmap->getAmbiance())*ambscale, 0.f, 0.f, 0.f);
S32 ni = nc; // neighbor ("index") - index into refNeighbor to write indices for current reflection probe's neighbors
{
//LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmsu - refNeighbors");
//pack neghbor list
for (auto& neighbor : refmap->mNeighbors)
{
if (ni >= 4096)
{ // out of space
break;
}
GLint idx = neighbor->mProbeIndex;
if (idx == -1)
{
continue;
}
// this neighbor may be sampled
rpd.refNeighbor[ni++] = idx;
}
}
if (nc == ni)
{
//no neighbors, tag as empty
rpd.refIndex[count][1] = -1;
}
else
{
rpd.refIndex[count][2] = ni - nc;
// move the cursor forward
nc = ni;
if (nc % 4 != 0)
{ // jump to next power of 4 for compatibility with ivec4
nc += 4 - (nc % 4);
}
}
count++;
}
rpd.refmapCount = count;
//copy rpd into uniform buffer object
if (mUBO == 0)
{
glGenBuffers(1, &mUBO);
}
{
LL_PROFILE_ZONE_NAMED_CATEGORY_DISPLAY("rmmsu - update buffer");
glBindBuffer(GL_UNIFORM_BUFFER, mUBO);
glBufferData(GL_UNIFORM_BUFFER, sizeof(ReflectionProbeData), &rpd, GL_STREAM_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
}
void LLReflectionMapManager::setUniforms()
{
if (!LLPipeline::sReflectionProbesEnabled)
{
return;
}
if (mUBO == 0)
{
updateUniforms();
}
glBindBufferBase(GL_UNIFORM_BUFFER, 1, mUBO);
}
void renderReflectionProbe(LLReflectionMap* probe)
{
F32* po = probe->mOrigin.getF32ptr();
//draw orange line from probe to neighbors
gGL.flush();
gGL.diffuseColor4f(1, 0.5f, 0, 1);
gGL.begin(gGL.LINES);
for (auto& neighbor : probe->mNeighbors)
{
gGL.vertex3fv(po);
gGL.vertex3fv(neighbor->mOrigin.getF32ptr());
}
gGL.end();
gGL.flush();
#if 0
LLSpatialGroup* group = probe->mGroup;
if (group)
{ // draw lines from corners of object aabb to reflection probe
const LLVector4a* bounds = group->getBounds();
LLVector4a o = bounds[0];
gGL.flush();
gGL.diffuseColor4f(0, 0, 1, 1);
F32* c = o.getF32ptr();
const F32* bc = bounds[0].getF32ptr();
const F32* bs = bounds[1].getF32ptr();
// daaw blue lines from corners to center of node
gGL.begin(gGL.LINES);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] + bs[0], bc[1] + bs[1], bc[2] + bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] - bs[0], bc[1] + bs[1], bc[2] + bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] + bs[0], bc[1] - bs[1], bc[2] + bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] - bs[0], bc[1] - bs[1], bc[2] + bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] + bs[0], bc[1] + bs[1], bc[2] - bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] - bs[0], bc[1] + bs[1], bc[2] - bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] + bs[0], bc[1] - bs[1], bc[2] - bs[2]);
gGL.vertex3fv(c);
gGL.vertex3f(bc[0] - bs[0], bc[1] - bs[1], bc[2] - bs[2]);
gGL.end();
//draw yellow line from center of node to reflection probe origin
gGL.flush();
gGL.diffuseColor4f(1, 1, 0, 1);
gGL.begin(gGL.LINES);
gGL.vertex3fv(c);
gGL.vertex3fv(po);
gGL.end();
gGL.flush();
}
#endif
}
void LLReflectionMapManager::renderDebug()
{
gDebugProgram.bind();
for (auto& probe : mProbes)
{
renderReflectionProbe(probe);
}
gDebugProgram.unbind();
}
void LLReflectionMapManager::initReflectionMaps()
{
if (mTexture.isNull())
{
mReflectionProbeCount = llclamp(gSavedSettings.getS32("RenderReflectionProbeCount"), 1, LL_MAX_REFLECTION_PROBE_COUNT);
mTexture = new LLCubeMapArray();
// store mReflectionProbeCount+2 cube maps, final two cube maps are used for render target and radiance map generation source)
mTexture->allocate(LL_REFLECTION_PROBE_RESOLUTION, 4, mReflectionProbeCount + 2);
mIrradianceMaps = new LLCubeMapArray();
mIrradianceMaps->allocate(LL_IRRADIANCE_MAP_RESOLUTION, 4, mReflectionProbeCount, FALSE);
}
if (mVertexBuffer.isNull())
{
U32 mask = LLVertexBuffer::MAP_VERTEX;
LLPointer<LLVertexBuffer> buff = new LLVertexBuffer(mask);
buff->allocateBuffer(4, 0);
LLStrider<LLVector3> v;
buff->getVertexStrider(v);
v[0] = LLVector3(-1, -1, -1);
v[1] = LLVector3(1, -1, -1);
v[2] = LLVector3(-1, 1, -1);
v[3] = LLVector3(1, 1, -1);
buff->unmapBuffer();
mVertexBuffer = buff;
}
}
void LLReflectionMapManager::cleanup()
{
mVertexBuffer = nullptr;
mRenderTarget.release();
mMipChain.clear();
mTexture = nullptr;
mIrradianceMaps = nullptr;
mProbes.clear();
mKillList.clear();
mCreateList.clear();
mReflectionMaps.clear();
mUpdatingFace = 0;
mDefaultProbe = nullptr;
mUpdatingProbe = nullptr;
glDeleteBuffers(1, &mUBO);
mUBO = 0;
// note: also called on teleport (not just shutdown), so make sure we're in a good "starting" state
initCubeFree();
}