Code owners
Assign users and groups as approvers for specific file changes. Learn more.
llvertexbuffer.cpp 49.79 KiB
/**
* @file llvertexbuffer.cpp
* @brief LLVertexBuffer implementation
*
* $LicenseInfo:firstyear=2003&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include <boost/static_assert.hpp>
#include "llsys.h"
#include "llvertexbuffer.h"
// #include "llrender.h"
#include "llglheaders.h"
#include "llmemtype.h"
#include "llrender.h"
#include "llvector4a.h"
#include "llshadermgr.h"
#include "llglslshader.h"
#include "llmemory.h"
//Next Highest Power Of Two
//helper function, returns first number > v that is a power of 2, or v if v is already a power of 2
U32 nhpo2(U32 v)
{
U32 r = 1;
while (r < v) {
r *= 2;
}
return r;
}
//============================================================================
//static
LLVBOPool LLVertexBuffer::sStreamVBOPool;
LLVBOPool LLVertexBuffer::sDynamicVBOPool;
LLVBOPool LLVertexBuffer::sStreamIBOPool;
LLVBOPool LLVertexBuffer::sDynamicIBOPool;
U32 LLVBOPool::sBytesPooled = 0;
LLPrivateMemoryPool* LLVertexBuffer::sPrivatePoolp = NULL ;
U32 LLVertexBuffer::sBindCount = 0;
U32 LLVertexBuffer::sSetCount = 0;
S32 LLVertexBuffer::sCount = 0;
S32 LLVertexBuffer::sGLCount = 0;
S32 LLVertexBuffer::sMappedCount = 0;
BOOL LLVertexBuffer::sDisableVBOMapping = FALSE ;
BOOL LLVertexBuffer::sEnableVBOs = TRUE;
U32 LLVertexBuffer::sGLRenderBuffer = 0;
U32 LLVertexBuffer::sGLRenderArray = 0;
U32 LLVertexBuffer::sGLRenderIndices = 0;
U32 LLVertexBuffer::sLastMask = 0;
BOOL LLVertexBuffer::sVBOActive = FALSE;
BOOL LLVertexBuffer::sIBOActive = FALSE;
U32 LLVertexBuffer::sAllocatedBytes = 0;
BOOL LLVertexBuffer::sMapped = FALSE;
BOOL LLVertexBuffer::sUseStreamDraw = TRUE;
BOOL LLVertexBuffer::sUseVAO = FALSE;
BOOL LLVertexBuffer::sPreferStreamDraw = FALSE;
const U32 FENCE_WAIT_TIME_NANOSECONDS = 10000; //1 ms
class LLGLSyncFence : public LLGLFence
{
public:
#ifdef GL_ARB_sync
GLsync mSync;
#endif
LLGLSyncFence()
{
#ifdef GL_ARB_sync
mSync = 0;
#endif
}
virtual ~LLGLSyncFence()
{
#ifdef GL_ARB_sync
if (mSync)
{
glDeleteSync(mSync);
}
#endif
}
void placeFence()
{
#ifdef GL_ARB_sync
if (mSync)
{
glDeleteSync(mSync);
}
mSync = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
#endif
}
void wait()
{
#ifdef GL_ARB_sync
if (mSync)
{
while (glClientWaitSync(mSync, 0, FENCE_WAIT_TIME_NANOSECONDS) == GL_TIMEOUT_EXPIRED)
{ //track the number of times we've waited here
static S32 waits = 0;
waits++;
}
}
#endif
}
};
//which power of 2 is i?
//assumes i is a power of 2 > 0
U32 wpo2(U32 i)
{
llassert(i > 0);
llassert(nhpo2(i) == i);
U32 r = 0;
while (i >>= 1) ++r;
return r;
}
U8* LLVBOPool::allocate(U32& name, U32 size)
{
llassert(nhpo2(size) == size);
U32 i = wpo2(size);
if (mFreeList.size() <= i)
{
mFreeList.resize(i+1);
}
U8* ret = NULL;
if (mFreeList[i].empty())
{
//make a new buffer
glGenBuffersARB(1, &name);
glBindBufferARB(mType, name);
glBufferDataARB(mType, size, 0, mUsage);
LLVertexBuffer::sAllocatedBytes += size;
if (LLVertexBuffer::sDisableVBOMapping)
{
ret = (U8*) ll_aligned_malloc_16(size);
}
glBindBufferARB(mType, 0);
}
else
{
name = mFreeList[i].front().mGLName;
ret = mFreeList[i].front().mClientData;
sBytesPooled -= size;
mFreeList[i].pop_front();
}
return ret;
}
void LLVBOPool::release(U32 name, U8* buffer, U32 size)
{
llassert(nhpo2(size) == size);
U32 i = wpo2(size);
llassert(mFreeList.size() > i);
Record rec;
rec.mGLName = name;
rec.mClientData = buffer;
sBytesPooled += size;
mFreeList[i].push_back(rec);
}
void LLVBOPool::cleanup()
{
U32 size = 1;
for (U32 i = 0; i < mFreeList.size(); ++i)
{
record_list_t& l = mFreeList[i];
while (!l.empty())
{
Record& r = l.front();
glDeleteBuffersARB(1, &r.mGLName);
if (r.mClientData)
{
ll_aligned_free_16(r.mClientData);
}
l.pop_front();
LLVertexBuffer::sAllocatedBytes -= size;
sBytesPooled -= size;
}
size *= 2;
}
}
//NOTE: each component must be AT LEAST 4 bytes in size to avoid a performance penalty on AMD hardware
S32 LLVertexBuffer::sTypeSize[LLVertexBuffer::TYPE_MAX] =
{
sizeof(LLVector4), // TYPE_VERTEX,
sizeof(LLVector4), // TYPE_NORMAL,
sizeof(LLVector2), // TYPE_TEXCOORD0,
sizeof(LLVector2), // TYPE_TEXCOORD1,
sizeof(LLVector2), // TYPE_TEXCOORD2,
sizeof(LLVector2), // TYPE_TEXCOORD3,
sizeof(LLColor4U), // TYPE_COLOR,
sizeof(LLColor4U), // TYPE_EMISSIVE, only alpha is used currently
sizeof(LLVector4), // TYPE_BINORMAL,
sizeof(F32), // TYPE_WEIGHT,
sizeof(LLVector4), // TYPE_WEIGHT4,
sizeof(LLVector4), // TYPE_CLOTHWEIGHT,
sizeof(LLVector4), // TYPE_TEXTURE_INDEX (actually exists as position.w), no extra data, but stride is 16 bytes
};
U32 LLVertexBuffer::sGLMode[LLRender::NUM_MODES] =
{
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN,
GL_POINTS,
GL_LINES,
GL_LINE_STRIP,
GL_QUADS,
GL_LINE_LOOP,
};
//static
void LLVertexBuffer::setupClientArrays(U32 data_mask)
{
if (sLastMask != data_mask)
{
BOOL error = FALSE;
if (LLGLSLShader::sNoFixedFunction)
{
for (U32 i = 0; i < TYPE_MAX; ++i)
{
S32 loc = i;
U32 mask = 1 << i;
if (sLastMask & (1 << i))
{ //was enabled
if (!(data_mask & mask))
{ //needs to be disabled
glDisableVertexAttribArrayARB(loc);
}
}
else
{ //was disabled
if (data_mask & mask)
{ //needs to be enabled
glEnableVertexAttribArrayARB(loc);
}
}
}
}
else
{
GLenum array[] =
{
GL_VERTEX_ARRAY,
GL_NORMAL_ARRAY,
GL_TEXTURE_COORD_ARRAY,
GL_COLOR_ARRAY,
};
GLenum mask[] =
{
MAP_VERTEX,
MAP_NORMAL,
MAP_TEXCOORD0,
MAP_COLOR
};
for (U32 i = 0; i < 4; ++i)
{
if (sLastMask & mask[i])
{ //was enabled
if (!(data_mask & mask[i]))
{ //needs to be disabled
glDisableClientState(array[i]);
}
else if (gDebugGL)
{ //needs to be enabled, make sure it was (DEBUG)
if (!glIsEnabled(array[i]))
{
if (gDebugSession)
{
error = TRUE;
gFailLog << "Bad client state! " << array[i] << " disabled." << std::endl;
}
else
{
llerrs << "Bad client state! " << array[i] << " disabled." << llendl;
}
}
}
}
else
{ //was disabled
if (data_mask & mask[i])
{ //needs to be enabled
glEnableClientState(array[i]);
}
else if (gDebugGL && glIsEnabled(array[i]))
{ //needs to be disabled, make sure it was (DEBUG TEMPORARY)
if (gDebugSession)
{
error = TRUE;
gFailLog << "Bad client state! " << array[i] << " enabled." << std::endl;
}
else
{
llerrs << "Bad client state! " << array[i] << " enabled." << llendl;
}
}
}
}
U32 map_tc[] =
{
MAP_TEXCOORD1,
MAP_TEXCOORD2,
MAP_TEXCOORD3
};
for (U32 i = 0; i < 3; i++)
{
if (sLastMask & map_tc[i])
{
if (!(data_mask & map_tc[i]))
{ //disable
glClientActiveTextureARB(GL_TEXTURE1_ARB+i);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glClientActiveTextureARB(GL_TEXTURE0_ARB);
}
}
else if (data_mask & map_tc[i])
{
glClientActiveTextureARB(GL_TEXTURE1_ARB+i);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glClientActiveTextureARB(GL_TEXTURE0_ARB);
}
}
if (sLastMask & MAP_BINORMAL)
{
if (!(data_mask & MAP_BINORMAL))
{
glClientActiveTextureARB(GL_TEXTURE2_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glClientActiveTextureARB(GL_TEXTURE0_ARB);
}
}
else if (data_mask & MAP_BINORMAL)
{
glClientActiveTextureARB(GL_TEXTURE2_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glClientActiveTextureARB(GL_TEXTURE0_ARB);
}
}
sLastMask = data_mask;
}
}
//static
void LLVertexBuffer::drawArrays(U32 mode, const std::vector<LLVector3>& pos, const std::vector<LLVector3>& norm)
{
llassert(!LLGLSLShader::sNoFixedFunction || LLGLSLShader::sCurBoundShaderPtr != NULL);
gGL.syncMatrices();
U32 count = pos.size();
llassert_always(norm.size() >= pos.size());
llassert_always(count > 0) ;
unbind();
setupClientArrays(MAP_VERTEX | MAP_NORMAL);
LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr;
if (shader)
{
S32 loc = LLVertexBuffer::TYPE_VERTEX;
if (loc > -1)
{
glVertexAttribPointerARB(loc, 3, GL_FLOAT, GL_FALSE, 0, pos[0].mV);
}
loc = LLVertexBuffer::TYPE_NORMAL;
if (loc > -1)
{
glVertexAttribPointerARB(loc, 3, GL_FLOAT, GL_FALSE, 0, norm[0].mV);
}
}
else
{
glVertexPointer(3, GL_FLOAT, 0, pos[0].mV);
glNormalPointer(GL_FLOAT, 0, norm[0].mV);
}
glDrawArrays(sGLMode[mode], 0, count);
}
//static
void LLVertexBuffer::drawElements(U32 mode, const LLVector4a* pos, const LLVector2* tc, S32 num_indices, const U16* indicesp)
{
llassert(!LLGLSLShader::sNoFixedFunction || LLGLSLShader::sCurBoundShaderPtr != NULL);
gGL.syncMatrices();
U32 mask = LLVertexBuffer::MAP_VERTEX;
if (tc)
{
mask = mask | LLVertexBuffer::MAP_TEXCOORD0;
}
unbind();
setupClientArrays(mask);
if (LLGLSLShader::sNoFixedFunction)
{
S32 loc = LLVertexBuffer::TYPE_VERTEX;
glVertexAttribPointerARB(loc, 3, GL_FLOAT, GL_FALSE, 16, pos);
if (tc)
{
loc = LLVertexBuffer::TYPE_TEXCOORD0;
glVertexAttribPointerARB(loc, 2, GL_FLOAT, GL_FALSE, 0, tc);
}
}
else
{
glTexCoordPointer(2, GL_FLOAT, 0, tc);
glVertexPointer(3, GL_FLOAT, 16, pos);
}
glDrawElements(sGLMode[mode], num_indices, GL_UNSIGNED_SHORT, indicesp);
}
void LLVertexBuffer::validateRange(U32 start, U32 end, U32 count, U32 indices_offset) const
{
if (start >= (U32) mNumVerts ||
end >= (U32) mNumVerts)
{
llerrs << "Bad vertex buffer draw range: [" << start << ", " << end << "] vs " << mNumVerts << llendl;
}
llassert(mNumIndices >= 0);
if (indices_offset >= (U32) mNumIndices ||
indices_offset + count > (U32) mNumIndices)
{
llerrs << "Bad index buffer draw range: [" << indices_offset << ", " << indices_offset+count << "]" << llendl;
}
if (gDebugGL && !useVBOs())
{
U16* idx = ((U16*) getIndicesPointer())+indices_offset;
for (U32 i = 0; i < count; ++i)
{
if (idx[i] < start || idx[i] > end)
{
llerrs << "Index out of range: " << idx[i] << " not in [" << start << ", " << end << "]" << llendl;
}
}
LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr;
if (shader && shader->mFeatures.mIndexedTextureChannels > 1)
{
LLStrider<LLVector4a> v;
//hack to get non-const reference
LLVertexBuffer* vb = (LLVertexBuffer*) this;
vb->getVertexStrider(v);
for (U32 i = start; i < end; i++)
{
S32 idx = (S32) (v[i][3]+0.25f);
if (idx < 0 || idx >= shader->mFeatures.mIndexedTextureChannels)
{
llerrs << "Bad texture index found in vertex data stream." << llendl;
}
}
}
}
}
void LLVertexBuffer::drawRange(U32 mode, U32 start, U32 end, U32 count, U32 indices_offset) const
{
validateRange(start, end, count, indices_offset);
gGL.syncMatrices();
llassert(mNumVerts >= 0);
llassert(!LLGLSLShader::sNoFixedFunction || LLGLSLShader::sCurBoundShaderPtr != NULL);
if (mGLArray)
{
if (mGLArray != sGLRenderArray)
{
llerrs << "Wrong vertex array bound." << llendl;
}
}
else
{
if (mGLIndices != sGLRenderIndices)
{
llerrs << "Wrong index buffer bound." << llendl;
}
if (mGLBuffer != sGLRenderBuffer)
{
llerrs << "Wrong vertex buffer bound." << llendl;
}
}
if (gDebugGL && !mGLArray && useVBOs())
{
GLint elem = 0;
glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB, &elem);
if (elem != mGLIndices)
{
llerrs << "Wrong index buffer bound!" << llendl;
}
}
if (mode >= LLRender::NUM_MODES)
{
llerrs << "Invalid draw mode: " << mode << llendl;
return;
}
U16* idx = ((U16*) getIndicesPointer())+indices_offset;
stop_glerror();
glDrawRangeElements(sGLMode[mode], start, end, count, GL_UNSIGNED_SHORT,
idx);
stop_glerror();
placeFence();
}
void LLVertexBuffer::draw(U32 mode, U32 count, U32 indices_offset) const
{
llassert(!LLGLSLShader::sNoFixedFunction || LLGLSLShader::sCurBoundShaderPtr != NULL);
gGL.syncMatrices();
llassert(mNumIndices >= 0);
if (indices_offset >= (U32) mNumIndices ||
indices_offset + count > (U32) mNumIndices)
{
llerrs << "Bad index buffer draw range: [" << indices_offset << ", " << indices_offset+count << "]" << llendl;
}
if (mGLArray)
{
if (mGLArray != sGLRenderArray)
{
llerrs << "Wrong vertex array bound." << llendl;
}
}
else
{
if (mGLIndices != sGLRenderIndices)
{
llerrs << "Wrong index buffer bound." << llendl;
}
if (mGLBuffer != sGLRenderBuffer)
{
llerrs << "Wrong vertex buffer bound." << llendl;
}
}
if (mode >= LLRender::NUM_MODES)
{
llerrs << "Invalid draw mode: " << mode << llendl;
return;
}
stop_glerror();
glDrawElements(sGLMode[mode], count, GL_UNSIGNED_SHORT,
((U16*) getIndicesPointer()) + indices_offset);
stop_glerror();
placeFence();
}
void LLVertexBuffer::drawArrays(U32 mode, U32 first, U32 count) const
{
llassert(!LLGLSLShader::sNoFixedFunction || LLGLSLShader::sCurBoundShaderPtr != NULL);
gGL.syncMatrices();
llassert(mNumVerts >= 0);
if (first >= (U32) mNumVerts ||
first + count > (U32) mNumVerts)
{
llerrs << "Bad vertex buffer draw range: [" << first << ", " << first+count << "]" << llendl;
}
if (mGLArray)
{
if (mGLArray != sGLRenderArray)
{
llerrs << "Wrong vertex array bound." << llendl;
}
}
else
{
if (mGLBuffer != sGLRenderBuffer || useVBOs() != sVBOActive)
{
llerrs << "Wrong vertex buffer bound." << llendl;
}
}
if (mode >= LLRender::NUM_MODES)
{
llerrs << "Invalid draw mode: " << mode << llendl;
return;
}
stop_glerror();
glDrawArrays(sGLMode[mode], first, count);
stop_glerror();
placeFence();
}
//static
void LLVertexBuffer::initClass(bool use_vbo, bool no_vbo_mapping)
{
sEnableVBOs = use_vbo && gGLManager.mHasVertexBufferObject ;
sDisableVBOMapping = sEnableVBOs && no_vbo_mapping ;
if(!sPrivatePoolp)
{
sPrivatePoolp = LLPrivateMemoryPoolManager::getInstance()->newPool(LLPrivateMemoryPool::STATIC) ;
}
sStreamVBOPool.mType = GL_ARRAY_BUFFER_ARB;
sStreamVBOPool.mUsage= GL_STREAM_DRAW_ARB;
sStreamIBOPool.mType = GL_ELEMENT_ARRAY_BUFFER_ARB;
sStreamIBOPool.mUsage= GL_STREAM_DRAW_ARB;
sDynamicVBOPool.mType = GL_ARRAY_BUFFER_ARB;
sDynamicVBOPool.mUsage= GL_DYNAMIC_DRAW_ARB;
sDynamicIBOPool.mType = GL_ELEMENT_ARRAY_BUFFER_ARB;
sDynamicIBOPool.mUsage= GL_DYNAMIC_DRAW_ARB;
}
//static
void LLVertexBuffer::unbind()
{
if (sGLRenderArray)
{
#if GL_ARB_vertex_array_object
glBindVertexArray(0);
#endif
sGLRenderArray = 0;
sGLRenderIndices = 0;
sIBOActive = FALSE;
}
if (sVBOActive)
{
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
sVBOActive = FALSE;
}
if (sIBOActive)
{
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
sIBOActive = FALSE;
}
sGLRenderBuffer = 0;
sGLRenderIndices = 0;
setupClientArrays(0);
}
//static
void LLVertexBuffer::cleanupClass()
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_CLEANUP_CLASS);
unbind();
sStreamIBOPool.cleanup();
sDynamicIBOPool.cleanup();
sStreamVBOPool.cleanup();
sDynamicVBOPool.cleanup();
if(sPrivatePoolp)
{
LLPrivateMemoryPoolManager::getInstance()->deletePool(sPrivatePoolp) ;
sPrivatePoolp = NULL ;
}
}
//----------------------------------------------------------------------------
LLVertexBuffer::LLVertexBuffer(U32 typemask, S32 usage) :
LLRefCount(),
mNumVerts(0),
mNumIndices(0),
mUsage(usage),
mGLBuffer(0),
mGLArray(0),
mGLIndices(0),
mMappedData(NULL),
mMappedIndexData(NULL),
mVertexLocked(FALSE),
mIndexLocked(FALSE),
mFinal(FALSE),
mEmpty(TRUE),
mFence(NULL)
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_CONSTRUCTOR);
mFence = NULL;
if (!sEnableVBOs)
{
mUsage = 0 ;
}
if (mUsage == GL_STREAM_DRAW_ARB && !sUseStreamDraw)
{
mUsage = 0;
}
if (mUsage == GL_DYNAMIC_DRAW_ARB && sPreferStreamDraw)
{
mUsage = GL_STREAM_DRAW_ARB;
}
if (mUsage == 0 && LLRender::sGLCoreProfile)
{ //MUST use VBOs for all rendering
mUsage = GL_STREAM_DRAW_ARB;
}
if (mUsage && mUsage != GL_STREAM_DRAW_ARB)
{ //only stream_draw and dynamic_draw are supported when using VBOs, dynamic draw is the default
mUsage = GL_DYNAMIC_DRAW_ARB;
}
//zero out offsets
for (U32 i = 0; i < TYPE_MAX; i++)
{
mOffsets[i] = 0;
}
mTypeMask = typemask;
mSize = 0;
mIndicesSize = 0;
mAlignedOffset = 0;
mAlignedIndexOffset = 0;
sCount++;
}
//static
S32 LLVertexBuffer::calcOffsets(const U32& typemask, S32* offsets, S32 num_vertices)
{
S32 offset = 0;
for (S32 i=0; i<TYPE_TEXTURE_INDEX; i++)
{
U32 mask = 1<<i;
if (typemask & mask)
{
if (offsets && LLVertexBuffer::sTypeSize[i])
{
offsets[i] = offset;
offset += LLVertexBuffer::sTypeSize[i]*num_vertices;
offset = (offset + 0xF) & ~0xF;
}
}
}
offsets[TYPE_TEXTURE_INDEX] = offsets[TYPE_VERTEX] + 12;
return offset+16;
}
//static
S32 LLVertexBuffer::calcVertexSize(const U32& typemask)
{
S32 size = 0;
for (S32 i = 0; i < TYPE_TEXTURE_INDEX; i++)
{
U32 mask = 1<<i;
if (typemask & mask)
{
size += LLVertexBuffer::sTypeSize[i];
}
}
return size;
}
S32 LLVertexBuffer::getSize() const
{
return mSize;
}
// protected, use unref()
//virtual
LLVertexBuffer::~LLVertexBuffer()
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_DESTRUCTOR);
destroyGLBuffer();
destroyGLIndices();
if (mGLArray)
{
#if GL_ARB_vertex_array_object
glDeleteVertexArrays(1, &mGLArray);
#endif
}
sCount--;
if (mFence)
{
delete mFence;
}
mFence = NULL;
llassert_always(!mMappedData && !mMappedIndexData) ;
};
void LLVertexBuffer::placeFence() const
{
/*if (!mFence && useVBOs())
{
if (gGLManager.mHasSync)
{
mFence = new LLGLSyncFence();
}
}
if (mFence)
{
mFence->placeFence();
}*/
}
void LLVertexBuffer::waitFence() const
{
/*if (mFence)
{
mFence->wait();
}*/
}
//----------------------------------------------------------------------------
void LLVertexBuffer::genBuffer(U32 size)
{
mSize = nhpo2(size);
if (mUsage == GL_STREAM_DRAW_ARB)
{
mMappedData = sStreamVBOPool.allocate(mGLBuffer, mSize);
}
else
{
mMappedData = sDynamicVBOPool.allocate(mGLBuffer, mSize);
}
sGLCount++;
}
void LLVertexBuffer::genIndices(U32 size)
{
mIndicesSize = nhpo2(size);
if (mUsage == GL_STREAM_DRAW_ARB)
{
mMappedIndexData = sStreamIBOPool.allocate(mGLIndices, mIndicesSize);
}
else
{
mMappedIndexData = sDynamicIBOPool.allocate(mGLIndices, mIndicesSize);
}
sGLCount++;
}
void LLVertexBuffer::releaseBuffer()
{
if (mUsage == GL_STREAM_DRAW_ARB)
{
sStreamVBOPool.release(mGLBuffer, mMappedData, mSize);
}
else
{
sDynamicVBOPool.release(mGLBuffer, mMappedData, mSize);
}
mGLBuffer = 0;
mMappedData = NULL;
sGLCount--;
}
void LLVertexBuffer::releaseIndices()
{
if (mUsage == GL_STREAM_DRAW_ARB)
{
sStreamIBOPool.release(mGLIndices, mMappedIndexData, mIndicesSize);
}
else
{
sDynamicIBOPool.release(mGLIndices, mMappedIndexData, mIndicesSize);
}
mGLIndices = 0;
mMappedIndexData = NULL;
sGLCount--;
}
void LLVertexBuffer::createGLBuffer(U32 size)
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_CREATE_VERTICES);
if (mGLBuffer)
{
destroyGLBuffer();
}
if (size == 0)
{
return;
}
mEmpty = TRUE;
if (useVBOs())
{
genBuffer(size);
}
else
{
static int gl_buffer_idx = 0;
mGLBuffer = ++gl_buffer_idx;
mMappedData = (U8*)ALLOCATE_MEM(sPrivatePoolp, size);
mSize = size;
}
}
void LLVertexBuffer::createGLIndices(U32 size)
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_CREATE_INDICES);
if (mGLIndices)
{
destroyGLIndices();
}
if (size == 0)
{
return;
}
mEmpty = TRUE;
//pad by 16 bytes for aligned copies
size += 16;
if (useVBOs())
{
//pad by another 16 bytes for VBO pointer adjustment
size += 16;
genIndices(size);
}
else
{
mMappedIndexData = (U8*)ALLOCATE_MEM(sPrivatePoolp, size);
static int gl_buffer_idx = 0;
mGLIndices = ++gl_buffer_idx;
mIndicesSize = size;
}
}
void LLVertexBuffer::destroyGLBuffer()
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_DESTROY_BUFFER);
if (mGLBuffer)
{
if (useVBOs())
{
releaseBuffer();
}
else
{
FREE_MEM(sPrivatePoolp, mMappedData) ;
mMappedData = NULL;
mEmpty = TRUE;
}
}
mGLBuffer = 0;
//unbind();
}
void LLVertexBuffer::destroyGLIndices()
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_DESTROY_INDICES);
if (mGLIndices)
{
if (useVBOs())
{
releaseIndices();
}
else
{
FREE_MEM(sPrivatePoolp, mMappedIndexData) ;
mMappedIndexData = NULL;
mEmpty = TRUE;
}
}
mGLIndices = 0;
//unbind();
}
void LLVertexBuffer::updateNumVerts(S32 nverts)
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_UPDATE_VERTS);
llassert(nverts >= 0);
if (nverts >= 65535)
{
llwarns << "Vertex buffer overflow!" << llendl;
nverts = 65535;
}
U32 needed_size = calcOffsets(mTypeMask, mOffsets, nverts);
if (needed_size > mSize || needed_size <= mSize/2)
{
createGLBuffer(needed_size);
}
mNumVerts = nverts;
}
void LLVertexBuffer::updateNumIndices(S32 nindices)
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_UPDATE_INDICES);
llassert(nindices >= 0);
U32 needed_size = sizeof(U16) * nindices;
if (needed_size > mIndicesSize || needed_size <= mIndicesSize/2)
{
createGLIndices(needed_size);
}
mNumIndices = nindices;
}
void LLVertexBuffer::allocateBuffer(S32 nverts, S32 nindices, bool create)
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_ALLOCATE_BUFFER);
stop_glerror();
if (nverts < 0 || nindices < 0 ||
nverts > 65536)
{
llerrs << "Bad vertex buffer allocation: " << nverts << " : " << nindices << llendl;
}
updateNumVerts(nverts);
updateNumIndices(nindices);
if (create && (nverts || nindices))
{
//actually allocate space for the vertex buffer if using VBO mapping
flush();
if (gGLManager.mHasVertexArrayObject && useVBOs() && (LLRender::sGLCoreProfile || sUseVAO))
{
#if GL_ARB_vertex_array_object
glGenVertexArrays(1, &mGLArray);
#endif
setupVertexArray();
}
}
}
static LLFastTimer::DeclareTimer FTM_SETUP_VERTEX_ARRAY("Setup VAO");
void LLVertexBuffer::setupVertexArray()
{
if (!mGLArray)
{
return;
}
LLFastTimer t(FTM_SETUP_VERTEX_ARRAY);
#if GL_ARB_vertex_array_object
glBindVertexArray(mGLArray);
#endif
sGLRenderArray = mGLArray;
U32 attrib_size[] =
{
3, //TYPE_VERTEX,
3, //TYPE_NORMAL,
2, //TYPE_TEXCOORD0,
2, //TYPE_TEXCOORD1,
2, //TYPE_TEXCOORD2,
2, //TYPE_TEXCOORD3,
4, //TYPE_COLOR,
4, //TYPE_EMISSIVE,
3, //TYPE_BINORMAL,
1, //TYPE_WEIGHT,
4, //TYPE_WEIGHT4,
4, //TYPE_CLOTHWEIGHT,
1, //TYPE_TEXTURE_INDEX
};
U32 attrib_type[] =
{
GL_FLOAT, //TYPE_VERTEX,
GL_FLOAT, //TYPE_NORMAL,
GL_FLOAT, //TYPE_TEXCOORD0,
GL_FLOAT, //TYPE_TEXCOORD1,
GL_FLOAT, //TYPE_TEXCOORD2,
GL_FLOAT, //TYPE_TEXCOORD3,
GL_UNSIGNED_BYTE, //TYPE_COLOR,
GL_UNSIGNED_BYTE, //TYPE_EMISSIVE,
GL_FLOAT, //TYPE_BINORMAL,
GL_FLOAT, //TYPE_WEIGHT,
GL_FLOAT, //TYPE_WEIGHT4,
GL_FLOAT, //TYPE_CLOTHWEIGHT,
GL_FLOAT, //TYPE_TEXTURE_INDEX
};
U32 attrib_normalized[] =
{
GL_FALSE, //TYPE_VERTEX,
GL_FALSE, //TYPE_NORMAL,
GL_FALSE, //TYPE_TEXCOORD0,
GL_FALSE, //TYPE_TEXCOORD1,
GL_FALSE, //TYPE_TEXCOORD2,
GL_FALSE, //TYPE_TEXCOORD3,
GL_TRUE, //TYPE_COLOR,
GL_TRUE, //TYPE_EMISSIVE,
GL_FALSE, //TYPE_BINORMAL,
GL_FALSE, //TYPE_WEIGHT,
GL_FALSE, //TYPE_WEIGHT4,
GL_FALSE, //TYPE_CLOTHWEIGHT,
GL_FALSE, //TYPE_TEXTURE_INDEX
};
bindGLBuffer(true);
bindGLIndices(true);
for (U32 i = 0; i < TYPE_MAX; ++i)
{
if (mTypeMask & (1 << i))
{
glEnableVertexAttribArrayARB(i);
glVertexAttribPointerARB(i, attrib_size[i], attrib_type[i], attrib_normalized[i], sTypeSize[i], (void*) mOffsets[i]);
}
else
{
glDisableVertexAttribArrayARB(i);
}
}
//draw a dummy triangle to set index array pointer
//glDrawElements(GL_TRIANGLES, 0, GL_UNSIGNED_SHORT, NULL);
unbind();
}
void LLVertexBuffer::resizeBuffer(S32 newnverts, S32 newnindices)
{
llassert(newnverts >= 0);
llassert(newnindices >= 0);
LLMemType mt2(LLMemType::MTYPE_VERTEX_RESIZE_BUFFER);
updateNumVerts(newnverts);
updateNumIndices(newnindices);
if (useVBOs())
{
flush();
if (mGLArray)
{ //if size changed, offsets changed
setupVertexArray();
}
}
}
BOOL LLVertexBuffer::useVBOs() const
{
//it's generally ineffective to use VBO for things that are streaming on apple
if (!mUsage)
{
return FALSE;
}
return TRUE;
}
//----------------------------------------------------------------------------
bool expand_region(LLVertexBuffer::MappedRegion& region, S32 index, S32 count)
{
S32 end = index+count;
S32 region_end = region.mIndex+region.mCount;
if (end < region.mIndex ||
index > region_end)
{ //gap exists, do not merge
return false;
}
S32 new_end = llmax(end, region_end);
S32 new_index = llmin(index, region.mIndex);
region.mIndex = new_index;
region.mCount = new_end-new_index;
return true;
}
// Map for data access
U8* LLVertexBuffer::mapVertexBuffer(S32 type, S32 index, S32 count, bool map_range)
{
bindGLBuffer(true);
LLMemType mt2(LLMemType::MTYPE_VERTEX_MAP_BUFFER);
if (mFinal)
{
llerrs << "LLVertexBuffer::mapVeretxBuffer() called on a finalized buffer." << llendl;
}
if (!useVBOs() && !mMappedData && !mMappedIndexData)
{
llerrs << "LLVertexBuffer::mapVertexBuffer() called on unallocated buffer." << llendl;
}
if (useVBOs())
{
if (sDisableVBOMapping || gGLManager.mHasMapBufferRange || gGLManager.mHasFlushBufferRange)
{
if (count == -1)
{
count = mNumVerts-index;
}
bool mapped = false;
//see if range is already mapped
for (U32 i = 0; i < mMappedVertexRegions.size(); ++i)
{
MappedRegion& region = mMappedVertexRegions[i];
if (region.mType == type)
{
if (expand_region(region, index, count))
{
mapped = true;
break;
}
}
}
if (!mapped)
{
//not already mapped, map new region
MappedRegion region(type, !sDisableVBOMapping && map_range ? -1 : index, count);
mMappedVertexRegions.push_back(region);
}
}
if (mVertexLocked && map_range)
{
llerrs << "Attempted to map a specific range of a buffer that was already mapped." << llendl;
}
if (!mVertexLocked)
{
LLMemType mt_v(LLMemType::MTYPE_VERTEX_MAP_BUFFER_VERTICES);
mVertexLocked = TRUE;
sMappedCount++;
stop_glerror();
if(sDisableVBOMapping)
{
map_range = false;
}
else
{
U8* src = NULL;
waitFence();
if (gGLManager.mHasMapBufferRange)
{
if (map_range)
{
#ifdef GL_ARB_map_buffer_range
S32 offset = mOffsets[type] + sTypeSize[type]*index;
S32 length = (sTypeSize[type]*count+0xF) & ~0xF;
src = (U8*) glMapBufferRange(GL_ARRAY_BUFFER_ARB, offset, length,
GL_MAP_WRITE_BIT |
GL_MAP_FLUSH_EXPLICIT_BIT |
GL_MAP_INVALIDATE_RANGE_BIT);
#endif
}
else
{
#ifdef GL_ARB_map_buffer_range
if (gDebugGL)
{
GLint size = 0;
glGetBufferParameterivARB(GL_ARRAY_BUFFER_ARB, GL_BUFFER_SIZE_ARB, &size);
if (size < mSize)
{
llerrs << "Invalid buffer size." << llendl;
}
}
src = (U8*) glMapBufferRange(GL_ARRAY_BUFFER_ARB, 0, mSize,
GL_MAP_WRITE_BIT |
GL_MAP_FLUSH_EXPLICIT_BIT);
#endif
}
}
else if (gGLManager.mHasFlushBufferRange)
{
if (map_range)
{
glBufferParameteriAPPLE(GL_ARRAY_BUFFER_ARB, GL_BUFFER_SERIALIZED_MODIFY_APPLE, GL_FALSE);
glBufferParameteriAPPLE(GL_ARRAY_BUFFER_ARB, GL_BUFFER_FLUSHING_UNMAP_APPLE, GL_FALSE);
src = (U8*) glMapBufferARB(GL_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB);
}
else
{
src = (U8*) glMapBufferARB(GL_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB);
}
}
else
{
map_range = false;
src = (U8*) glMapBufferARB(GL_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB);
}
llassert(src != NULL);
mMappedData = LL_NEXT_ALIGNED_ADDRESS<U8>(src);
mAlignedOffset = mMappedData - src;
stop_glerror();
}
if (!mMappedData)
{
log_glerror();
//check the availability of memory
LLMemory::logMemoryInfo(TRUE) ;
if(!sDisableVBOMapping)
{
//--------------------
//print out more debug info before crash
llinfos << "vertex buffer size: (num verts : num indices) = " << getNumVerts() << " : " << getNumIndices() << llendl ;
GLint size ;
glGetBufferParameterivARB(GL_ARRAY_BUFFER_ARB, GL_BUFFER_SIZE_ARB, &size) ;
llinfos << "GL_ARRAY_BUFFER_ARB size is " << size << llendl ;
//--------------------
GLint buff;
glGetIntegerv(GL_ARRAY_BUFFER_BINDING_ARB, &buff);
if ((GLuint)buff != mGLBuffer)
{
llerrs << "Invalid GL vertex buffer bound: " << buff << llendl;
}
llerrs << "glMapBuffer returned NULL (no vertex data)" << llendl;
}
else
{
llerrs << "memory allocation for vertex data failed." << llendl ;
}
}
}
}
else
{
map_range = false;
}
if (map_range && gGLManager.mHasMapBufferRange && !sDisableVBOMapping)
{
return mMappedData;
}
else
{
return mMappedData+mOffsets[type]+sTypeSize[type]*index;
}
}
U8* LLVertexBuffer::mapIndexBuffer(S32 index, S32 count, bool map_range)
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_MAP_BUFFER);
bindGLIndices(true);
if (mFinal)
{
llerrs << "LLVertexBuffer::mapIndexBuffer() called on a finalized buffer." << llendl;
}
if (!useVBOs() && !mMappedData && !mMappedIndexData)
{
llerrs << "LLVertexBuffer::mapIndexBuffer() called on unallocated buffer." << llendl;
}
if (useVBOs())
{
if (sDisableVBOMapping || gGLManager.mHasMapBufferRange || gGLManager.mHasFlushBufferRange)
{
if (count == -1)
{
count = mNumIndices-index;
}
bool mapped = false;
//see if range is already mapped
for (U32 i = 0; i < mMappedIndexRegions.size(); ++i)
{
MappedRegion& region = mMappedIndexRegions[i];
if (expand_region(region, index, count))
{
mapped = true;
break;
}
}
if (!mapped)
{
//not already mapped, map new region
MappedRegion region(TYPE_INDEX, !sDisableVBOMapping && map_range ? -1 : index, count);
mMappedIndexRegions.push_back(region);
}
}
if (mIndexLocked && map_range)
{
llerrs << "Attempted to map a specific range of a buffer that was already mapped." << llendl;
}
if (!mIndexLocked)
{
LLMemType mt_v(LLMemType::MTYPE_VERTEX_MAP_BUFFER_INDICES);
mIndexLocked = TRUE;
sMappedCount++;
stop_glerror();
if (gDebugGL && useVBOs())
{
GLint elem = 0;
glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB, &elem);
if (elem != mGLIndices)
{
llerrs << "Wrong index buffer bound!" << llendl;
}
}
if(sDisableVBOMapping)
{
map_range = false;
}
else
{
U8* src = NULL;
waitFence();
if (gGLManager.mHasMapBufferRange)
{
if (map_range)
{
#ifdef GL_ARB_map_buffer_range
S32 offset = sizeof(U16)*index;
S32 length = sizeof(U16)*count;
src = (U8*) glMapBufferRange(GL_ELEMENT_ARRAY_BUFFER_ARB, offset, length,
GL_MAP_WRITE_BIT |
GL_MAP_FLUSH_EXPLICIT_BIT |
GL_MAP_INVALIDATE_RANGE_BIT);
#endif
}
else
{
#ifdef GL_ARB_map_buffer_range
src = (U8*) glMapBufferRange(GL_ELEMENT_ARRAY_BUFFER_ARB, 0, sizeof(U16)*mNumIndices,
GL_MAP_WRITE_BIT |
GL_MAP_FLUSH_EXPLICIT_BIT);
#endif
}
}
else if (gGLManager.mHasFlushBufferRange)
{
if (map_range)
{
glBufferParameteriAPPLE(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_BUFFER_SERIALIZED_MODIFY_APPLE, GL_FALSE);
glBufferParameteriAPPLE(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_BUFFER_FLUSHING_UNMAP_APPLE, GL_FALSE);
src = (U8*) glMapBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB);
}
else
{
src = (U8*) glMapBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB);
}
}
else
{
map_range = false;
src = (U8*) glMapBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB);
}
llassert(src != NULL);
mMappedIndexData = src; //LL_NEXT_ALIGNED_ADDRESS<U8>(src);
mAlignedIndexOffset = mMappedIndexData - src;
stop_glerror();
}
}
if (!mMappedIndexData)
{
log_glerror();
LLMemory::logMemoryInfo(TRUE) ;
if(!sDisableVBOMapping)
{
GLint buff;
glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB, &buff);
if ((GLuint)buff != mGLIndices)
{
llerrs << "Invalid GL index buffer bound: " << buff << llendl;
}
llerrs << "glMapBuffer returned NULL (no index data)" << llendl;
}
else
{
llerrs << "memory allocation for Index data failed. " << llendl ;
}
}
}
else
{
map_range = false;
}
if (map_range && gGLManager.mHasMapBufferRange && !sDisableVBOMapping)
{
return mMappedIndexData;
}
else
{
return mMappedIndexData + sizeof(U16)*index;
}
}
void LLVertexBuffer::unmapBuffer()
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_UNMAP_BUFFER);
if (!useVBOs())
{
return ; //nothing to unmap
}
bool updated_all = false ;
if (mMappedData && mVertexLocked)
{
bindGLBuffer(true);
updated_all = mIndexLocked; //both vertex and index buffers done updating
if(sDisableVBOMapping)
{
if (!mMappedVertexRegions.empty())
{
stop_glerror();
for (U32 i = 0; i < mMappedVertexRegions.size(); ++i)
{
const MappedRegion& region = mMappedVertexRegions[i];
S32 offset = region.mIndex >= 0 ? mOffsets[region.mType]+sTypeSize[region.mType]*region.mIndex : 0;
S32 length = sTypeSize[region.mType]*region.mCount;
glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, offset, length, mMappedData+offset);
stop_glerror();
}
mMappedVertexRegions.clear();
}
else
{
stop_glerror();
glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, getSize(), mMappedData);
stop_glerror();
}
}
else
{
if (gGLManager.mHasMapBufferRange || gGLManager.mHasFlushBufferRange)
{
if (!mMappedVertexRegions.empty())
{
stop_glerror();
for (U32 i = 0; i < mMappedVertexRegions.size(); ++i)
{
const MappedRegion& region = mMappedVertexRegions[i];
S32 offset = region.mIndex >= 0 ? mOffsets[region.mType]+sTypeSize[region.mType]*region.mIndex : 0;
S32 length = sTypeSize[region.mType]*region.mCount;
if (gGLManager.mHasMapBufferRange)
{
#ifdef GL_ARB_map_buffer_range
glFlushMappedBufferRange(GL_ARRAY_BUFFER_ARB, offset, length);
#endif
}
else if (gGLManager.mHasFlushBufferRange)
{
glFlushMappedBufferRangeAPPLE(GL_ARRAY_BUFFER_ARB, offset, length);
}
stop_glerror();
}
mMappedVertexRegions.clear();
}
}
stop_glerror();
glUnmapBufferARB(GL_ARRAY_BUFFER_ARB);
stop_glerror();
mMappedData = NULL;
}
mVertexLocked = FALSE ;
sMappedCount--;
}
if (mMappedIndexData && mIndexLocked)
{
bindGLIndices();
if(sDisableVBOMapping)
{
if (!mMappedIndexRegions.empty())
{
for (U32 i = 0; i < mMappedIndexRegions.size(); ++i)
{
const MappedRegion& region = mMappedIndexRegions[i];
S32 offset = region.mIndex >= 0 ? sizeof(U16)*region.mIndex : 0;
S32 length = sizeof(U16)*region.mCount;
glBufferSubDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, offset, length, mMappedIndexData+offset);
stop_glerror();
}
mMappedIndexRegions.clear();
}
else
{
stop_glerror();
glBufferSubDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0, getIndicesSize(), mMappedIndexData);
stop_glerror();
}
}
else
{
if (gGLManager.mHasMapBufferRange || gGLManager.mHasFlushBufferRange)
{
if (!mMappedIndexRegions.empty())
{
for (U32 i = 0; i < mMappedIndexRegions.size(); ++i)
{
const MappedRegion& region = mMappedIndexRegions[i];
S32 offset = region.mIndex >= 0 ? sizeof(U16)*region.mIndex : 0;
S32 length = sizeof(U16)*region.mCount;
if (gGLManager.mHasMapBufferRange)
{
#ifdef GL_ARB_map_buffer_range
glFlushMappedBufferRange(GL_ELEMENT_ARRAY_BUFFER_ARB, offset, length);
#endif
}
else if (gGLManager.mHasFlushBufferRange)
{
#ifdef GL_APPLE_flush_buffer_range
glFlushMappedBufferRangeAPPLE(GL_ELEMENT_ARRAY_BUFFER_ARB, offset, length);
#endif
}
stop_glerror();
}
mMappedIndexRegions.clear();
}
}
stop_glerror();
glUnmapBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB);
stop_glerror();
mMappedIndexData = NULL ;
}
mIndexLocked = FALSE ;
sMappedCount--;
}
if(updated_all)
{
mEmpty = FALSE;
}
}
//----------------------------------------------------------------------------
template <class T,S32 type> struct VertexBufferStrider
{
typedef LLStrider<T> strider_t;
static bool get(LLVertexBuffer& vbo,
strider_t& strider,
S32 index, S32 count, bool map_range)
{
if (type == LLVertexBuffer::TYPE_INDEX)
{
U8* ptr = vbo.mapIndexBuffer(index, count, map_range);
if (ptr == NULL)
{
llwarns << "mapIndexBuffer failed!" << llendl;
return FALSE;
}
strider = (T*)ptr;
strider.setStride(0);
return TRUE;
}
else if (vbo.hasDataType(type))
{
S32 stride = LLVertexBuffer::sTypeSize[type];
U8* ptr = vbo.mapVertexBuffer(type, index, count, map_range);
if (ptr == NULL)
{
llwarns << "mapVertexBuffer failed!" << llendl;
return FALSE;
}
strider = (T*)ptr;
strider.setStride(stride);
return TRUE;
}
else
{
llerrs << "VertexBufferStrider could not find valid vertex data." << llendl;
}
return FALSE;
}
};
bool LLVertexBuffer::getVertexStrider(LLStrider<LLVector3>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<LLVector3,TYPE_VERTEX>::get(*this, strider, index, count, map_range);
}
bool LLVertexBuffer::getVertexStrider(LLStrider<LLVector4a>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<LLVector4a,TYPE_VERTEX>::get(*this, strider, index, count, map_range);
}
bool LLVertexBuffer::getIndexStrider(LLStrider<U16>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<U16,TYPE_INDEX>::get(*this, strider, index, count, map_range);
}
bool LLVertexBuffer::getTexCoord0Strider(LLStrider<LLVector2>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<LLVector2,TYPE_TEXCOORD0>::get(*this, strider, index, count, map_range);
}
bool LLVertexBuffer::getTexCoord1Strider(LLStrider<LLVector2>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<LLVector2,TYPE_TEXCOORD1>::get(*this, strider, index, count, map_range);
}
bool LLVertexBuffer::getNormalStrider(LLStrider<LLVector3>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<LLVector3,TYPE_NORMAL>::get(*this, strider, index, count, map_range);
}
bool LLVertexBuffer::getBinormalStrider(LLStrider<LLVector3>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<LLVector3,TYPE_BINORMAL>::get(*this, strider, index, count, map_range);
}
bool LLVertexBuffer::getColorStrider(LLStrider<LLColor4U>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<LLColor4U,TYPE_COLOR>::get(*this, strider, index, count, map_range);
}
bool LLVertexBuffer::getEmissiveStrider(LLStrider<LLColor4U>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<LLColor4U,TYPE_EMISSIVE>::get(*this, strider, index, count, map_range);
}
bool LLVertexBuffer::getWeightStrider(LLStrider<F32>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<F32,TYPE_WEIGHT>::get(*this, strider, index, count, map_range);
}
bool LLVertexBuffer::getWeight4Strider(LLStrider<LLVector4>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<LLVector4,TYPE_WEIGHT4>::get(*this, strider, index, count, map_range);
}
bool LLVertexBuffer::getClothWeightStrider(LLStrider<LLVector4>& strider, S32 index, S32 count, bool map_range)
{
return VertexBufferStrider<LLVector4,TYPE_CLOTHWEIGHT>::get(*this, strider, index, count, map_range);
}
//----------------------------------------------------------------------------
static LLFastTimer::DeclareTimer FTM_BIND_GL_ARRAY("Bind Array");
bool LLVertexBuffer::bindGLArray()
{
if (mGLArray && sGLRenderArray != mGLArray)
{
{
LLFastTimer t(FTM_BIND_GL_ARRAY);
#if GL_ARB_vertex_array_object
glBindVertexArray(mGLArray);
#endif
sGLRenderArray = mGLArray;
}
//really shouldn't be necessary, but some drivers don't properly restore the
//state of GL_ELEMENT_ARRAY_BUFFER_BINDING
bindGLIndices();
return true;
}
return false;
}
static LLFastTimer::DeclareTimer FTM_BIND_GL_BUFFER("Bind Buffer");
bool LLVertexBuffer::bindGLBuffer(bool force_bind)
{
bindGLArray();
bool ret = false;
if (useVBOs() && (force_bind || (mGLBuffer && (mGLBuffer != sGLRenderBuffer || !sVBOActive))))
{
LLFastTimer t(FTM_BIND_GL_BUFFER);
/*if (sMapped)
{
llerrs << "VBO bound while another VBO mapped!" << llendl;
}*/
glBindBufferARB(GL_ARRAY_BUFFER_ARB, mGLBuffer);
sGLRenderBuffer = mGLBuffer;
sBindCount++;
sVBOActive = TRUE;
if (mGLArray)
{
llassert(sGLRenderArray == mGLArray);
//mCachedRenderBuffer = mGLBuffer;
}
ret = true;
}
return ret;
}
static LLFastTimer::DeclareTimer FTM_BIND_GL_INDICES("Bind Indices");
bool LLVertexBuffer::bindGLIndices(bool force_bind)
{
bindGLArray();
bool ret = false;
if (useVBOs() && (force_bind || (mGLIndices && (mGLIndices != sGLRenderIndices || !sIBOActive))))
{
LLFastTimer t(FTM_BIND_GL_INDICES);
/*if (sMapped)
{
llerrs << "VBO bound while another VBO mapped!" << llendl;
}*/
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, mGLIndices);
sGLRenderIndices = mGLIndices;
stop_glerror();
sBindCount++;
sIBOActive = TRUE;
ret = true;
}
return ret;
}
void LLVertexBuffer::flush()
{
if (useVBOs())
{
unmapBuffer();
}
}
// Set for rendering
void LLVertexBuffer::setBuffer(U32 data_mask)
{
flush();
LLMemType mt2(LLMemType::MTYPE_VERTEX_SET_BUFFER);
//set up pointers if the data mask is different ...
BOOL setup = (sLastMask != data_mask);
if (gDebugGL && data_mask != 0)
{ //make sure data requirements are fulfilled
LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr;
if (shader)
{
U32 required_mask = 0;
for (U32 i = 0; i < LLVertexBuffer::TYPE_TEXTURE_INDEX; ++i)
{
if (shader->getAttribLocation(i) > -1)
{
U32 required = 1 << i;
if ((data_mask & required) == 0)
{
llwarns << "Missing attribute: " << LLShaderMgr::instance()->mReservedAttribs[i] << llendl;
}
required_mask |= required;
}
}
if ((data_mask & required_mask) != required_mask)
{
llerrs << "Shader consumption mismatches data provision." << llendl;
}
}
}
if (useVBOs())
{
if (mGLArray)
{
bindGLArray();
setup = FALSE; //do NOT perform pointer setup if using VAO
}
else
{
if (bindGLBuffer())
{
setup = TRUE;
}
if (bindGLIndices())
{
setup = TRUE;
}
}
BOOL error = FALSE;
if (gDebugGL && !mGLArray)
{
GLint buff;
glGetIntegerv(GL_ARRAY_BUFFER_BINDING_ARB, &buff);
if ((GLuint)buff != mGLBuffer)
{
if (gDebugSession)
{
error = TRUE;
gFailLog << "Invalid GL vertex buffer bound: " << buff << std::endl;
}
else
{
llerrs << "Invalid GL vertex buffer bound: " << buff << llendl;
}
}
if (mGLIndices)
{
glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB, &buff);
if ((GLuint)buff != mGLIndices)
{
if (gDebugSession)
{
error = TRUE;
gFailLog << "Invalid GL index buffer bound: " << buff << std::endl;
}
else
{
llerrs << "Invalid GL index buffer bound: " << buff << llendl;
}
}
}
}
}
else
{
if (sGLRenderArray)
{
#if GL_ARB_vertex_array_object
glBindVertexArray(0);
#endif
sGLRenderArray = 0;
sGLRenderIndices = 0;
sIBOActive = FALSE;
}
if (mGLBuffer)
{
if (sVBOActive)
{
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
sBindCount++;
sVBOActive = FALSE;
setup = TRUE; // ... or a VBO is deactivated
}
if (sGLRenderBuffer != mGLBuffer)
{
sGLRenderBuffer = mGLBuffer;
setup = TRUE; // ... or a client memory pointer changed
}
}
if (mGLIndices)
{
if (sIBOActive)
{
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
sBindCount++;
sIBOActive = FALSE;
}
sGLRenderIndices = mGLIndices;
}
}
if (!mGLArray)
{
setupClientArrays(data_mask);
}
if (mGLBuffer)
{
if (data_mask && setup)
{
setupVertexBuffer(data_mask); // subclass specific setup (virtual function)
sSetCount++;
}
}
}
// virtual (default)
void LLVertexBuffer::setupVertexBuffer(U32 data_mask)
{
LLMemType mt2(LLMemType::MTYPE_VERTEX_SETUP_VERTEX_BUFFER);
stop_glerror();
U8* base = useVBOs() ? (U8*) mAlignedOffset : mMappedData;
/*if ((data_mask & mTypeMask) != data_mask)
{
llerrs << "LLVertexBuffer::setupVertexBuffer missing required components for supplied data mask." << llendl;
}*/
if (LLGLSLShader::sNoFixedFunction)
{
if (data_mask & MAP_NORMAL)
{
S32 loc = TYPE_NORMAL;
void* ptr = (void*)(base + mOffsets[TYPE_NORMAL]);
glVertexAttribPointerARB(loc, 3, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_NORMAL], ptr);
}
if (data_mask & MAP_TEXCOORD3)
{
S32 loc = TYPE_TEXCOORD3;
void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD3]);
glVertexAttribPointerARB(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD3], ptr);
}
if (data_mask & MAP_TEXCOORD2)
{
S32 loc = TYPE_TEXCOORD2;
void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD2]);
glVertexAttribPointerARB(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD2], ptr);
}
if (data_mask & MAP_TEXCOORD1)
{
S32 loc = TYPE_TEXCOORD1;
void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD1]);
glVertexAttribPointerARB(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD1], ptr);
}
if (data_mask & MAP_BINORMAL)
{
S32 loc = TYPE_BINORMAL;
void* ptr = (void*)(base + mOffsets[TYPE_BINORMAL]);
glVertexAttribPointerARB(loc, 3,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_BINORMAL], ptr);
}
if (data_mask & MAP_TEXCOORD0)
{
S32 loc = TYPE_TEXCOORD0;
void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD0]);
glVertexAttribPointerARB(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD0], ptr);
}
if (data_mask & MAP_COLOR)
{
S32 loc = TYPE_COLOR;
void* ptr = (void*)(base + mOffsets[TYPE_COLOR]);
glVertexAttribPointerARB(loc, 4, GL_UNSIGNED_BYTE, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_COLOR], ptr);
}
if (data_mask & MAP_EMISSIVE)
{
S32 loc = TYPE_EMISSIVE;
void* ptr = (void*)(base + mOffsets[TYPE_EMISSIVE]);
glVertexAttribPointerARB(loc, 4, GL_UNSIGNED_BYTE, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_EMISSIVE], ptr);
}
if (data_mask & MAP_WEIGHT)
{
S32 loc = TYPE_WEIGHT;
void* ptr = (void*)(base + mOffsets[TYPE_WEIGHT]);
glVertexAttribPointerARB(loc, 1, GL_FLOAT, FALSE, LLVertexBuffer::sTypeSize[TYPE_WEIGHT], ptr);
}
if (data_mask & MAP_WEIGHT4)
{
S32 loc = TYPE_WEIGHT4;
void* ptr = (void*)(base+mOffsets[TYPE_WEIGHT4]);
glVertexAttribPointerARB(loc, 4, GL_FLOAT, FALSE, LLVertexBuffer::sTypeSize[TYPE_WEIGHT4], ptr);
}
if (data_mask & MAP_CLOTHWEIGHT)
{
S32 loc = TYPE_CLOTHWEIGHT;
void* ptr = (void*)(base + mOffsets[TYPE_CLOTHWEIGHT]);
glVertexAttribPointerARB(loc, 4, GL_FLOAT, TRUE, LLVertexBuffer::sTypeSize[TYPE_CLOTHWEIGHT], ptr);
}
if (data_mask & MAP_TEXTURE_INDEX)
{
S32 loc = TYPE_TEXTURE_INDEX;
void *ptr = (void*) (base + mOffsets[TYPE_VERTEX] + 12);
glVertexAttribPointerARB(loc, 1, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_VERTEX], ptr);
}
if (data_mask & MAP_VERTEX)
{
S32 loc = TYPE_VERTEX;
void* ptr = (void*)(base + mOffsets[TYPE_VERTEX]);
glVertexAttribPointerARB(loc, 3,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_VERTEX], ptr);
}
}
else
{
if (data_mask & MAP_NORMAL)
{
glNormalPointer(GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_NORMAL], (void*)(base + mOffsets[TYPE_NORMAL]));
}
if (data_mask & MAP_TEXCOORD3)
{
glClientActiveTextureARB(GL_TEXTURE3_ARB);
glTexCoordPointer(2,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD3], (void*)(base + mOffsets[TYPE_TEXCOORD3]));
glClientActiveTextureARB(GL_TEXTURE0_ARB);
}
if (data_mask & MAP_TEXCOORD2)
{
glClientActiveTextureARB(GL_TEXTURE2_ARB);
glTexCoordPointer(2,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD2], (void*)(base + mOffsets[TYPE_TEXCOORD2]));
glClientActiveTextureARB(GL_TEXTURE0_ARB);
}
if (data_mask & MAP_TEXCOORD1)
{
glClientActiveTextureARB(GL_TEXTURE1_ARB);
glTexCoordPointer(2,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD1], (void*)(base + mOffsets[TYPE_TEXCOORD1]));
glClientActiveTextureARB(GL_TEXTURE0_ARB);
}
if (data_mask & MAP_BINORMAL)
{
glClientActiveTextureARB(GL_TEXTURE2_ARB);
glTexCoordPointer(3,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_BINORMAL], (void*)(base + mOffsets[TYPE_BINORMAL]));
glClientActiveTextureARB(GL_TEXTURE0_ARB);
}
if (data_mask & MAP_TEXCOORD0)
{
glTexCoordPointer(2,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD0], (void*)(base + mOffsets[TYPE_TEXCOORD0]));
}
if (data_mask & MAP_COLOR)
{
glColorPointer(4, GL_UNSIGNED_BYTE, LLVertexBuffer::sTypeSize[TYPE_COLOR], (void*)(base + mOffsets[TYPE_COLOR]));
}
if (data_mask & MAP_VERTEX)
{
glVertexPointer(3,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_VERTEX], (void*)(base + 0));
}
}
llglassertok();
}
LLVertexBuffer::MappedRegion::MappedRegion(S32 type, S32 index, S32 count)
: mType(type), mIndex(index), mCount(count)
{
llassert(mType == LLVertexBuffer::TYPE_INDEX ||
mType < LLVertexBuffer::TYPE_TEXTURE_INDEX);
}