Code owners
Assign users and groups as approvers for specific file changes. Learn more.
v3dmath.h 13.30 KiB
/**
* @file v3dmath.h
* @brief High precision 3 dimensional vector.
*
* $LicenseInfo:firstyear=2000&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_V3DMATH_H
#define LL_V3DMATH_H
#include "llerror.h"
#include "v3math.h"
class LLVector3d
{
public:
F64 mdV[3];
const static LLVector3d zero;
const static LLVector3d x_axis;
const static LLVector3d y_axis;
const static LLVector3d z_axis;
const static LLVector3d x_axis_neg;
const static LLVector3d y_axis_neg;
const static LLVector3d z_axis_neg;
inline LLVector3d(); // Initializes LLVector3d to (0, 0, 0)
inline LLVector3d(const F64 x, const F64 y, const F64 z); // Initializes LLVector3d to (x. y, z)
inline explicit LLVector3d(const F64 *vec); // Initializes LLVector3d to (vec[0]. vec[1], vec[2])
inline explicit LLVector3d(const LLVector3 &vec);
explicit LLVector3d(const LLSD& sd)
{
setValue(sd);
}
void setValue(const LLSD& sd)
{
mdV[0] = sd[0].asReal();
mdV[1] = sd[1].asReal();
mdV[2] = sd[2].asReal();
}
LLSD getValue() const
{
LLSD ret;
ret[0] = mdV[0];
ret[1] = mdV[1];
ret[2] = mdV[2];
return ret;
}
inline BOOL isFinite() const; // checks to see if all values of LLVector3d are finite
BOOL clamp(const F64 min, const F64 max); // Clamps all values to (min,max), returns TRUE if data changed
BOOL abs(); // sets all values to absolute value of original value (first octant), returns TRUE if changed
inline const LLVector3d& clear(); // Clears LLVector3d to (0, 0, 0, 1)
inline const LLVector3d& clearVec(); // deprecated
inline const LLVector3d& setZero(); // Zero LLVector3d to (0, 0, 0, 0)
inline const LLVector3d& zeroVec(); // deprecated
inline const LLVector3d& set(const F64 x, const F64 y, const F64 z); // Sets LLVector3d to (x, y, z, 1)
inline const LLVector3d& set(const LLVector3d &vec); // Sets LLVector3d to vec
inline const LLVector3d& set(const F64 *vec); // Sets LLVector3d to vec
inline const LLVector3d& set(const LLVector3 &vec);
inline const LLVector3d& setVec(const F64 x, const F64 y, const F64 z); // deprecated
inline const LLVector3d& setVec(const LLVector3d &vec); // deprecated
inline const LLVector3d& setVec(const F64 *vec); // deprecated
inline const LLVector3d& setVec(const LLVector3 &vec); // deprecated
F64 magVec() const; // deprecated
F64 magVecSquared() const; // deprecated
inline F64 normVec(); // deprecated
F64 length() const; // Returns magnitude of LLVector3d
F64 lengthSquared() const; // Returns magnitude squared of LLVector3d
inline F64 normalize(); // Normalizes and returns the magnitude of LLVector3d
const LLVector3d& rotVec(const F64 angle, const LLVector3d &vec); // Rotates about vec by angle radians
const LLVector3d& rotVec(const F64 angle, const F64 x, const F64 y, const F64 z); // Rotates about x,y,z by angle radians
const LLVector3d& rotVec(const LLMatrix3 &mat); // Rotates by LLMatrix4 mat
const LLVector3d& rotVec(const LLQuaternion &q); // Rotates by LLQuaternion q
BOOL isNull() const; // Returns TRUE if vector has a _very_small_ length
BOOL isExactlyZero() const { return !mdV[VX] && !mdV[VY] && !mdV[VZ]; }
const LLVector3d& operator=(const LLVector4 &a);
F64 operator[](int idx) const { return mdV[idx]; }
F64 &operator[](int idx) { return mdV[idx]; }
friend LLVector3d operator+(const LLVector3d& a, const LLVector3d& b); // Return vector a + b
friend LLVector3d operator-(const LLVector3d& a, const LLVector3d& b); // Return vector a minus b
friend F64 operator*(const LLVector3d& a, const LLVector3d& b); // Return a dot b
friend LLVector3d operator%(const LLVector3d& a, const LLVector3d& b); // Return a cross b
friend LLVector3d operator*(const LLVector3d& a, const F64 k); // Return a times scaler k
friend LLVector3d operator/(const LLVector3d& a, const F64 k); // Return a divided by scaler k
friend LLVector3d operator*(const F64 k, const LLVector3d& a); // Return a times scaler k
friend bool operator==(const LLVector3d& a, const LLVector3d& b); // Return a == b
friend bool operator!=(const LLVector3d& a, const LLVector3d& b); // Return a != b
friend const LLVector3d& operator+=(LLVector3d& a, const LLVector3d& b); // Return vector a + b
friend const LLVector3d& operator-=(LLVector3d& a, const LLVector3d& b); // Return vector a minus b
friend const LLVector3d& operator%=(LLVector3d& a, const LLVector3d& b); // Return a cross b
friend const LLVector3d& operator*=(LLVector3d& a, const F64 k); // Return a times scaler k
friend const LLVector3d& operator/=(LLVector3d& a, const F64 k); // Return a divided by scaler k
friend LLVector3d operator-(const LLVector3d& a); // Return vector -a
friend std::ostream& operator<<(std::ostream& s, const LLVector3d& a); // Stream a
static BOOL parseVector3d(const std::string& buf, LLVector3d* value);
};
typedef LLVector3d LLGlobalVec;
inline const LLVector3d &LLVector3d::set(const LLVector3 &vec)
{
mdV[0] = vec.mV[0];
mdV[1] = vec.mV[1];
mdV[2] = vec.mV[2];
return *this;
}
inline const LLVector3d &LLVector3d::setVec(const LLVector3 &vec)
{
mdV[0] = vec.mV[0];
mdV[1] = vec.mV[1];
mdV[2] = vec.mV[2];
return *this;
}
inline LLVector3d::LLVector3d(void)
{
mdV[0] = 0.f;
mdV[1] = 0.f;
mdV[2] = 0.f;
}
inline LLVector3d::LLVector3d(const F64 x, const F64 y, const F64 z)
{
mdV[VX] = x;
mdV[VY] = y;
mdV[VZ] = z;
}
inline LLVector3d::LLVector3d(const F64 *vec)
{
mdV[VX] = vec[VX];
mdV[VY] = vec[VY];
mdV[VZ] = vec[VZ];
}
inline LLVector3d::LLVector3d(const LLVector3 &vec)
{
mdV[VX] = vec.mV[VX];
mdV[VY] = vec.mV[VY];
mdV[VZ] = vec.mV[VZ];
}
/*
inline LLVector3d::LLVector3d(const LLVector3d ©)
{
mdV[VX] = copy.mdV[VX];
mdV[VY] = copy.mdV[VY];
mdV[VZ] = copy.mdV[VZ];
}
*/
// Destructors
// checker
inline BOOL LLVector3d::isFinite() const
{
return (llfinite(mdV[VX]) && llfinite(mdV[VY]) && llfinite(mdV[VZ]));
}
// Clear and Assignment Functions
inline const LLVector3d& LLVector3d::clear(void)
{
mdV[0] = 0.f;
mdV[1] = 0.f;
mdV[2]= 0.f;
return (*this);
}
inline const LLVector3d& LLVector3d::clearVec(void)
{
mdV[0] = 0.f;
mdV[1] = 0.f;
mdV[2]= 0.f;
return (*this);
}
inline const LLVector3d& LLVector3d::setZero(void)
{
mdV[0] = 0.f;
mdV[1] = 0.f;
mdV[2] = 0.f;
return (*this);
}
inline const LLVector3d& LLVector3d::zeroVec(void)
{
mdV[0] = 0.f;
mdV[1] = 0.f;
mdV[2] = 0.f;
return (*this);
}
inline const LLVector3d& LLVector3d::set(const F64 x, const F64 y, const F64 z)
{
mdV[VX] = x;
mdV[VY] = y;
mdV[VZ] = z;
return (*this);
}
inline const LLVector3d& LLVector3d::set(const LLVector3d &vec)
{
mdV[0] = vec.mdV[0];
mdV[1] = vec.mdV[1];
mdV[2] = vec.mdV[2];
return (*this);
}
inline const LLVector3d& LLVector3d::set(const F64 *vec)
{
mdV[0] = vec[0];
mdV[1] = vec[1];
mdV[2] = vec[2];
return (*this);
}
inline const LLVector3d& LLVector3d::setVec(const F64 x, const F64 y, const F64 z)
{
mdV[VX] = x;
mdV[VY] = y;
mdV[VZ] = z;
return (*this);
}
inline const LLVector3d& LLVector3d::setVec(const LLVector3d &vec)
{
mdV[0] = vec.mdV[0];
mdV[1] = vec.mdV[1];
mdV[2] = vec.mdV[2];
return (*this);
}
inline const LLVector3d& LLVector3d::setVec(const F64 *vec)
{
mdV[0] = vec[0];
mdV[1] = vec[1];
mdV[2] = vec[2];
return (*this);
}
inline F64 LLVector3d::normVec(void)
{
F64 mag = (F32) sqrt(mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2]);
F64 oomag;
if (mag > FP_MAG_THRESHOLD)
{
oomag = 1.f/mag;
mdV[0] *= oomag;
mdV[1] *= oomag;
mdV[2] *= oomag;
}
else
{
mdV[0] = 0.f;
mdV[1] = 0.f;
mdV[2] = 0.f;
mag = 0;
}
return (mag);
}
inline F64 LLVector3d::normalize(void)
{
F64 mag = (F32) sqrt(mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2]);
F64 oomag;
if (mag > FP_MAG_THRESHOLD)
{
oomag = 1.f/mag;
mdV[0] *= oomag;
mdV[1] *= oomag;
mdV[2] *= oomag;
}
else
{
mdV[0] = 0.f;
mdV[1] = 0.f;
mdV[2] = 0.f;
mag = 0;
}
return (mag);
}
// LLVector3d Magnitude and Normalization Functions
inline F64 LLVector3d::magVec(void) const
{
return (F32) sqrt(mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2]);
}
inline F64 LLVector3d::magVecSquared(void) const
{
return mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2];
}
inline F64 LLVector3d::length(void) const
{
return (F32) sqrt(mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2]);
}
inline F64 LLVector3d::lengthSquared(void) const
{
return mdV[0]*mdV[0] + mdV[1]*mdV[1] + mdV[2]*mdV[2];
}
inline LLVector3d operator+(const LLVector3d& a, const LLVector3d& b)
{
LLVector3d c(a);
return c += b;
}
inline LLVector3d operator-(const LLVector3d& a, const LLVector3d& b)
{
LLVector3d c(a);
return c -= b;
}
inline F64 operator*(const LLVector3d& a, const LLVector3d& b)
{
return (a.mdV[0]*b.mdV[0] + a.mdV[1]*b.mdV[1] + a.mdV[2]*b.mdV[2]);
}
inline LLVector3d operator%(const LLVector3d& a, const LLVector3d& b)
{
return LLVector3d( a.mdV[1]*b.mdV[2] - b.mdV[1]*a.mdV[2], a.mdV[2]*b.mdV[0] - b.mdV[2]*a.mdV[0], a.mdV[0]*b.mdV[1] - b.mdV[0]*a.mdV[1] );
}
inline LLVector3d operator/(const LLVector3d& a, const F64 k)
{
F64 t = 1.f / k;
return LLVector3d( a.mdV[0] * t, a.mdV[1] * t, a.mdV[2] * t );
}
inline LLVector3d operator*(const LLVector3d& a, const F64 k)
{
return LLVector3d( a.mdV[0] * k, a.mdV[1] * k, a.mdV[2] * k );
}
inline LLVector3d operator*(F64 k, const LLVector3d& a)
{
return LLVector3d( a.mdV[0] * k, a.mdV[1] * k, a.mdV[2] * k );
}
inline bool operator==(const LLVector3d& a, const LLVector3d& b)
{
return ( (a.mdV[0] == b.mdV[0])
&&(a.mdV[1] == b.mdV[1])
&&(a.mdV[2] == b.mdV[2]));
}
inline bool operator!=(const LLVector3d& a, const LLVector3d& b)
{
return ( (a.mdV[0] != b.mdV[0])
||(a.mdV[1] != b.mdV[1])
||(a.mdV[2] != b.mdV[2]));
}
inline const LLVector3d& operator+=(LLVector3d& a, const LLVector3d& b)
{
a.mdV[0] += b.mdV[0];
a.mdV[1] += b.mdV[1];
a.mdV[2] += b.mdV[2];
return a;
}
inline const LLVector3d& operator-=(LLVector3d& a, const LLVector3d& b)
{
a.mdV[0] -= b.mdV[0];
a.mdV[1] -= b.mdV[1];
a.mdV[2] -= b.mdV[2];
return a;
}
inline const LLVector3d& operator%=(LLVector3d& a, const LLVector3d& b)
{
LLVector3d ret( a.mdV[1]*b.mdV[2] - b.mdV[1]*a.mdV[2], a.mdV[2]*b.mdV[0] - b.mdV[2]*a.mdV[0], a.mdV[0]*b.mdV[1] - b.mdV[0]*a.mdV[1]);
a = ret;
return a;
}
inline const LLVector3d& operator*=(LLVector3d& a, const F64 k)
{
a.mdV[0] *= k;
a.mdV[1] *= k;
a.mdV[2] *= k;
return a;
}
inline const LLVector3d& operator/=(LLVector3d& a, const F64 k)
{
F64 t = 1.f / k;
a.mdV[0] *= t;
a.mdV[1] *= t;
a.mdV[2] *= t;
return a;
}
inline LLVector3d operator-(const LLVector3d& a)
{
return LLVector3d( -a.mdV[0], -a.mdV[1], -a.mdV[2] );
}
inline F64 dist_vec(const LLVector3d& a, const LLVector3d& b)
{
F64 x = a.mdV[0] - b.mdV[0];
F64 y = a.mdV[1] - b.mdV[1];
F64 z = a.mdV[2] - b.mdV[2];
return (F32) sqrt( x*x + y*y + z*z );
}
inline F64 dist_vec_squared(const LLVector3d& a, const LLVector3d& b)
{
F64 x = a.mdV[0] - b.mdV[0];
F64 y = a.mdV[1] - b.mdV[1];
F64 z = a.mdV[2] - b.mdV[2];
return x*x + y*y + z*z;
}
inline F64 dist_vec_squared2D(const LLVector3d& a, const LLVector3d& b)
{
F64 x = a.mdV[0] - b.mdV[0];
F64 y = a.mdV[1] - b.mdV[1];
return x*x + y*y;
}
inline LLVector3d lerp(const LLVector3d& a, const LLVector3d& b, const F64 u)
{
return LLVector3d(
a.mdV[VX] + (b.mdV[VX] - a.mdV[VX]) * u,
a.mdV[VY] + (b.mdV[VY] - a.mdV[VY]) * u,
a.mdV[VZ] + (b.mdV[VZ] - a.mdV[VZ]) * u);
}
inline BOOL LLVector3d::isNull() const
{
if ( F_APPROXIMATELY_ZERO > mdV[VX]*mdV[VX] + mdV[VY]*mdV[VY] + mdV[VZ]*mdV[VZ] )
{
return TRUE;
}
return FALSE;
}
inline F64 angle_between(const LLVector3d& a, const LLVector3d& b)
{
LLVector3d an = a;
LLVector3d bn = b;
an.normalize();
bn.normalize();
F64 cosine = an * bn;
F64 angle = (cosine >= 1.0f) ? 0.0f :
(cosine <= -1.0f) ? F_PI :
acos(cosine);
return angle;
}
inline BOOL are_parallel(const LLVector3d& a, const LLVector3d& b, const F64 epsilon)
{
LLVector3d an = a;
LLVector3d bn = b;
an.normalize();
bn.normalize();
F64 dot = an * bn;
if ( (1.0f - fabs(dot)) < epsilon)
{
return TRUE;
}
return FALSE;
}
inline LLVector3d projected_vec(const LLVector3d& a, const LLVector3d& b)
{
LLVector3d project_axis = b;
project_axis.normalize();
return project_axis * (a * project_axis);
}
inline LLVector3d inverse_projected_vec(const LLVector3d& a, const LLVector3d& b)
{
LLVector3d normalized_a = a;
normalized_a.normalize();
LLVector3d normalized_b = b;
F64 b_length = normalized_b.normalize();
F64 dot_product = normalized_a * normalized_b;
return normalized_a * (b_length / dot_product);
}
#endif // LL_V3DMATH_H