Code owners
Assign users and groups as approvers for specific file changes. Learn more.
llcalcparser.h 7.20 KiB
/*
* LLCalcParser.h
* Copyright 2008 Aimee Walton.
* $LicenseInfo:firstyear=2008&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2008, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*
*/
#ifndef LL_CALCPARSER_H
#define LL_CALCPARSER_H
#include <boost/spirit/include/classic_attribute.hpp>
#include <boost/spirit/include/classic_core.hpp>
#include <boost/spirit/include/classic_error_handling.hpp>
#include <boost/spirit/include/classic_position_iterator.hpp>
#include <boost/spirit/include/phoenix1_binders.hpp>
#include <boost/spirit/include/classic_symbols.hpp>
using namespace boost::spirit::classic;
#include "llcalc.h"
#include "llmath.h"
struct LLCalcParser : grammar<LLCalcParser>
{
LLCalcParser(F32& result, LLCalc::calc_map_t* constants, LLCalc::calc_map_t* vars) :
mResult(result), mConstants(constants), mVariables(vars) {};
struct value_closure : closure<value_closure, F32>
{
member1 value;
};
template <typename ScannerT>
struct definition
{
// Rule declarations
rule<ScannerT> statement, identifier;
rule<ScannerT, value_closure::context_t> expression, term,
power,
unary_expr,
factor,
unary_func,
binary_func,
group;
// start() should return the starting symbol
rule<ScannerT> const& start() const { return statement; }
definition(LLCalcParser const& self)
{
using namespace phoenix;
assertion<std::string> assert_domain("Domain error");
// assertion<std::string> assert_symbol("Unknown symbol");
assertion<std::string> assert_syntax("Syntax error");
identifier =
lexeme_d[(alpha_p | '_') >> *(alnum_p | '_')]
;
group =
'(' >> expression[group.value = arg1] >> assert_syntax(ch_p(')'))
;
unary_func =
((str_p("SIN") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_sin)(self,arg1)]) |
(str_p("COS") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_cos)(self,arg1)]) |
(str_p("TAN") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_tan)(self,arg1)]) |
(str_p("ASIN") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_asin)(self,arg1)]) |
(str_p("ACOS") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_acos)(self,arg1)]) |
(str_p("ATAN") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_atan)(self,arg1)]) |
(str_p("SQRT") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_sqrt)(self,arg1)]) |
(str_p("LOG") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_log)(self,arg1)]) |
(str_p("EXP") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_exp)(self,arg1)]) |
(str_p("ABS") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_fabs)(self,arg1)]) |
(str_p("FLR") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_floor)(self,arg1)]) |
(str_p("CEIL") >> '(' >> expression[unary_func.value = bind(&LLCalcParser::_ceil)(self,arg1)])
) >> assert_syntax(ch_p(')'))
;
binary_func =
((str_p("ATAN2") >> '(' >> expression[binary_func.value = arg1] >> ',' >>
expression[binary_func.value = bind(&LLCalcParser::_atan2)(self, binary_func.value, arg1)]) |
(str_p("MIN") >> '(' >> expression[binary_func.value = arg1] >> ',' >>
expression[binary_func.value = bind(&LLCalcParser::_min)(self, binary_func.value, arg1)]) |
(str_p("MAX") >> '(' >> expression[binary_func.value = arg1] >> ',' >>
expression[binary_func.value = bind(&LLCalcParser::_max)(self, binary_func.value, arg1)])
) >> assert_syntax(ch_p(')'))
;
// *TODO: Localisation of the decimal point?
// Problem, LLLineEditor::postvalidateFloat accepts a comma when appropriate
// for the current locale. However to do that here could clash with using
// the comma as a separator when passing arguments to functions.
factor =
(ureal_p[factor.value = arg1] |
group[factor.value = arg1] |
unary_func[factor.value = arg1] |
binary_func[factor.value = arg1] |
// Lookup throws an Unknown Symbol error if it is unknown, while this works fine,
// would be "neater" to handle symbol lookup from here with an assertive parser.
// constants_p[factor.value = arg1]|
identifier[factor.value = bind(&LLCalcParser::lookup)(self, arg1, arg2)]
) >>
// Detect and throw math errors.
assert_domain(eps_p(bind(&LLCalcParser::checkNaN)(self, factor.value)))
;
unary_expr =
!ch_p('+') >> factor[unary_expr.value = arg1] |
'-' >> factor[unary_expr.value = -arg1]
;
power =
unary_expr[power.value = arg1] >>
*('^' >> assert_syntax(unary_expr[power.value = bind(&powf)(power.value, arg1)]))
;
term =
power[term.value = arg1] >>
*(('*' >> assert_syntax(power[term.value *= arg1])) |
('/' >> assert_syntax(power[term.value /= arg1])) |
('%' >> assert_syntax(power[term.value = bind(&fmodf)(term.value, arg1)]))
)
;
expression =
assert_syntax(term[expression.value = arg1]) >>
*(('+' >> assert_syntax(term[expression.value += arg1])) |
('-' >> assert_syntax(term[expression.value -= arg1]))
)
;
statement =
!ch_p('=') >> ( expression )[var(self.mResult) = arg1] >> (end_p)
;
}
};
private:
// Member functions for semantic actions
F32 lookup(const std::string::iterator&, const std::string::iterator&) const;
F32 _min(const F32& a, const F32& b) const { return llmin(a, b); }
F32 _max(const F32& a, const F32& b) const { return llmax(a, b); }
bool checkNaN(const F32& a) const { return !llisnan(a); }
//FIX* non ambigious function fix making SIN() work for calc -Cryogenic Blitz
F32 _sin(const F32& a) const { return sin(DEG_TO_RAD * a); }
F32 _cos(const F32& a) const { return cos(DEG_TO_RAD * a); }
F32 _tan(const F32& a) const { return tan(DEG_TO_RAD * a); }
F32 _asin(const F32& a) const { return asin(a * RAD_TO_DEG); }
F32 _acos(const F32& a) const { return acos(a * RAD_TO_DEG); }
F32 _atan(const F32& a) const { return atan(a * RAD_TO_DEG); }
F32 _sqrt(const F32& a) const { return sqrt(a); }
F32 _log(const F32& a) const { return log(a); }
F32 _exp(const F32& a) const { return exp(a); }
F32 _fabs(const F32& a) const { return fabs(a); }
F32 _floor(const F32& a) const { return llfloor(a); }
F32 _ceil(const F32& a) const { return llceil(a); }
F32 _atan2(const F32& a,const F32& b) const { return atan2(a,b); }
LLCalc::calc_map_t* mConstants;
LLCalc::calc_map_t* mVariables;
// LLCalc::calc_map_t* mUserVariables;
F32& mResult;
};
#endif // LL_CALCPARSER_H