Skip to content
Snippets Groups Projects
  • Nat Goodspeed's avatar
    a97aebb8
    Enhance LLInstanceTracker variants to be more uniform. · a97aebb8
    Nat Goodspeed authored
    For both the (so far unused) generic KEY form and the KEY = T* form, provide
    key_iter, beginKeys(), endKeys().
    Change instance_iter so that when dereferenced, it gives you a T& rather than
    a T*, to be more harmonious with a typical STL container. (You parameterize
    LLInstanceTracker with T, not with T*.)
    Fix existing usage in llfasttimer.cpp and lltimer.cpp to agree.
    For the KEY = T* specialization, add T* getInstance(T*) so client isn't forced
    to know which variant was used.
    Add unit tests for uniformity of public operations on both variants.
    a97aebb8
    History
    Enhance LLInstanceTracker variants to be more uniform.
    Nat Goodspeed authored
    For both the (so far unused) generic KEY form and the KEY = T* form, provide
    key_iter, beginKeys(), endKeys().
    Change instance_iter so that when dereferenced, it gives you a T& rather than
    a T*, to be more harmonious with a typical STL container. (You parameterize
    LLInstanceTracker with T, not with T*.)
    Fix existing usage in llfasttimer.cpp and lltimer.cpp to agree.
    For the KEY = T* specialization, add T* getInstance(T*) so client isn't forced
    to know which variant was used.
    Add unit tests for uniformity of public operations on both variants.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
lltimer.cpp 14.14 KiB
/** 
 * @file lltimer.cpp
 * @brief Cross-platform objects for doing timing 
 *
 * $LicenseInfo:firstyear=2000&license=viewergpl$
 * 
 * Copyright (c) 2000-2009, Linden Research, Inc.
 * 
 * Second Life Viewer Source Code
 * The source code in this file ("Source Code") is provided by Linden Lab
 * to you under the terms of the GNU General Public License, version 2.0
 * ("GPL"), unless you have obtained a separate licensing agreement
 * ("Other License"), formally executed by you and Linden Lab.  Terms of
 * the GPL can be found in doc/GPL-license.txt in this distribution, or
 * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
 * 
 * There are special exceptions to the terms and conditions of the GPL as
 * it is applied to this Source Code. View the full text of the exception
 * in the file doc/FLOSS-exception.txt in this software distribution, or
 * online at
 * http://secondlifegrid.net/programs/open_source/licensing/flossexception
 * 
 * By copying, modifying or distributing this software, you acknowledge
 * that you have read and understood your obligations described above,
 * and agree to abide by those obligations.
 * 
 * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
 * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
 * COMPLETENESS OR PERFORMANCE.
 * $/LicenseInfo$
 */

#include "linden_common.h"

#include "lltimer.h"

#include "u64.h"

#if LL_WINDOWS
#	define WIN32_LEAN_AND_MEAN
#	include <winsock2.h>
#	include <windows.h>
#elif LL_LINUX || LL_SOLARIS || LL_DARWIN
#       include <errno.h>
#	include <sys/time.h>
#else 
#	error "architecture not supported"
#endif


//
// Locally used constants
//
const U32 SEC_PER_DAY = 86400;
const F64 SEC_TO_MICROSEC = 1000000.f;
const U64 SEC_TO_MICROSEC_U64 = 1000000;
const F64 USEC_TO_SEC_F64 = 0.000001;


//---------------------------------------------------------------------------
// Globals and statics
//---------------------------------------------------------------------------

S32 gUTCOffset = 0; // viewer's offset from server UTC, in seconds
LLTimer* LLTimer::sTimer = NULL;

F64 gClockFrequency = 0.0;
F64 gClockFrequencyInv = 0.0;
F64 gClocksToMicroseconds = 0.0;
U64 gTotalTimeClockCount = 0;
U64 gLastTotalTimeClockCount = 0;

//
// Forward declarations
//


//---------------------------------------------------------------------------
// Implementation
//---------------------------------------------------------------------------

#if LL_WINDOWS
void ms_sleep(U32 ms)
{
	Sleep(ms);
}

U32 micro_sleep(U64 us, U32 max_yields)
{
    // max_yields is unused; just fiddle with it to avoid warnings.
    max_yields = 0;
    ms_sleep(us / 1000);
    return 0;
}
#elif LL_LINUX || LL_SOLARIS || LL_DARWIN
static void _sleep_loop(struct timespec& thiswait)
{
	struct timespec nextwait;
	bool sleep_more = false;

	do {
		int result = nanosleep(&thiswait, &nextwait);

		// check if sleep was interrupted by a signal; unslept
		// remainder was written back into 't' and we just nanosleep
		// again.
		sleep_more = (result == -1 && EINTR == errno);

		if (sleep_more)
		{
			if ( nextwait.tv_sec > thiswait.tv_sec ||
			     (nextwait.tv_sec == thiswait.tv_sec &&
			      nextwait.tv_nsec >= thiswait.tv_nsec) )
			{
				// if the remaining time isn't actually going
				// down then we're being shafted by low clock
				// resolution - manually massage the sleep time
				// downward.
				if (nextwait.tv_nsec > 1000000) {
					// lose 1ms
					nextwait.tv_nsec -= 1000000;
				} else {
					if (nextwait.tv_sec == 0) {
						// already so close to finished
						sleep_more = false;
					} else {
						// lose up to 1ms
						nextwait.tv_nsec = 0;
					}
				}
			}
			thiswait = nextwait;
		}
	} while (sleep_more);
}

U32 micro_sleep(U64 us, U32 max_yields)
{
    U64 start = get_clock_count();
    // This is kernel dependent.  Currently, our kernel generates software clock
    // interrupts at 250 Hz (every 4,000 microseconds).
    const U64 KERNEL_SLEEP_INTERVAL_US = 4000;

    S32 num_sleep_intervals = (us - (KERNEL_SLEEP_INTERVAL_US >> 1)) / KERNEL_SLEEP_INTERVAL_US;
    if (num_sleep_intervals > 0)
    {
        U64 sleep_time = (num_sleep_intervals * KERNEL_SLEEP_INTERVAL_US) - (KERNEL_SLEEP_INTERVAL_US >> 1);
        struct timespec thiswait;
        thiswait.tv_sec = sleep_time / 1000000;
        thiswait.tv_nsec = (sleep_time % 1000000) * 1000l;
        _sleep_loop(thiswait);
    }

    U64 current_clock = get_clock_count();
    U32 yields = 0;
    while (    (yields < max_yields)
            && (current_clock - start < us) )
    {
        sched_yield();
        ++yields;
        current_clock = get_clock_count();
    }
    return yields;
}

void ms_sleep(U32 ms)
{
	long mslong = ms; // tv_nsec is a long
	struct timespec thiswait;
	thiswait.tv_sec = ms / 1000;
	thiswait.tv_nsec = (mslong % 1000) * 1000000l;
    _sleep_loop(thiswait);
}
#else
# error "architecture not supported"
#endif

//
// CPU clock/other clock frequency and count functions
//

#if LL_WINDOWS
U64 get_clock_count()
{
	static bool firstTime = true;
	static U64 offset;
		// ensures that callers to this function never have to deal with wrap

	// QueryPerformanceCounter implementation
	LARGE_INTEGER clock_count;
	QueryPerformanceCounter(&clock_count);
	if (firstTime) {
		offset = clock_count.QuadPart;
		firstTime = false;
	}
	return clock_count.QuadPart - offset;
}

F64 calc_clock_frequency(U32 uiMeasureMSecs)
{
	__int64 freq;
	QueryPerformanceFrequency((LARGE_INTEGER *) &freq);
	return (F64)freq;
}
#endif // LL_WINDOWS


#if LL_LINUX || LL_DARWIN || LL_SOLARIS
// Both Linux and Mac use gettimeofday for accurate time
F64 calc_clock_frequency(unsigned int uiMeasureMSecs)
{
	return 1000000.0; // microseconds, so 1 Mhz.
}

U64 get_clock_count()
{
	// Linux clocks are in microseconds
	struct timeval tv;
	gettimeofday(&tv, NULL);
	return tv.tv_sec*SEC_TO_MICROSEC_U64 + tv.tv_usec;
}
#endif


void update_clock_frequencies()
{
	gClockFrequency = calc_clock_frequency(50U);
	gClockFrequencyInv = 1.0/gClockFrequency;
	gClocksToMicroseconds = gClockFrequencyInv * SEC_TO_MICROSEC;
}


///////////////////////////////////////////////////////////////////////////////

// returns a U64 number that represents the number of 
// microseconds since the unix epoch - Jan 1, 1970
U64 totalTime()
{
	U64 current_clock_count = get_clock_count();
	if (!gTotalTimeClockCount)
	{
		update_clock_frequencies();
		gTotalTimeClockCount = current_clock_count;

#if LL_WINDOWS
		// Synch us up with local time (even though we PROBABLY don't need to, this is how it was implemented)
		// Unix platforms use gettimeofday so they are synced, although this probably isn't a good assumption to
		// make in the future.

		gTotalTimeClockCount = (U64)(time(NULL) * gClockFrequency);
#endif

		// Update the last clock count
		gLastTotalTimeClockCount = current_clock_count;
	}
	else
	{
		if (current_clock_count >= gLastTotalTimeClockCount)
		{
			// No wrapping, we're all okay.
			gTotalTimeClockCount += current_clock_count - gLastTotalTimeClockCount;
		}
		else
		{
			// We've wrapped.  Compensate correctly
			gTotalTimeClockCount += (0xFFFFFFFFFFFFFFFFULL - gLastTotalTimeClockCount) + current_clock_count;
		}

		// Update the last clock count
		gLastTotalTimeClockCount = current_clock_count;
	}

	// Return the total clock tick count in microseconds.
	return (U64)(gTotalTimeClockCount*gClocksToMicroseconds);
}


///////////////////////////////////////////////////////////////////////////////

LLTimer::LLTimer()
{
	if (!gClockFrequency)
	{
		update_clock_frequencies();
	}

	mStarted = TRUE;
	reset();
}

LLTimer::~LLTimer()
{
}

// static
U64 LLTimer::getTotalTime()
{
	// simply call into the implementation function.
	return totalTime();
}	

// static
F64 LLTimer::getTotalSeconds()
{
	return U64_to_F64(getTotalTime()) * USEC_TO_SEC_F64;
}

void LLTimer::reset()
{
	mLastClockCount = get_clock_count();
	mExpirationTicks = 0;
}

///////////////////////////////////////////////////////////////////////////////

U64 LLTimer::getCurrentClockCount()
{
	return get_clock_count();
}

///////////////////////////////////////////////////////////////////////////////

void LLTimer::setLastClockCount(U64 current_count)
{
	mLastClockCount = current_count;
}

///////////////////////////////////////////////////////////////////////////////

static
U64 getElapsedTimeAndUpdate(U64& lastClockCount)
{
	U64 current_clock_count = get_clock_count();
	U64 result;

	if (current_clock_count >= lastClockCount)
	{
		result = current_clock_count - lastClockCount;
	}
	else
	{
		// time has gone backward
		result = 0;
	}

	lastClockCount = current_clock_count;

	return result;
}

F64 LLTimer::getElapsedTimeF64() const
{
	U64 last = mLastClockCount;
	return (F64)getElapsedTimeAndUpdate(last) * gClockFrequencyInv;
}

F32 LLTimer::getElapsedTimeF32() const
{
	return (F32)getElapsedTimeF64();
}

F64 LLTimer::getElapsedTimeAndResetF64()
{
	return (F64)getElapsedTimeAndUpdate(mLastClockCount) * gClockFrequencyInv;
}

F32 LLTimer::getElapsedTimeAndResetF32()
{
	return (F32)getElapsedTimeAndResetF64();
}

///////////////////////////////////////////////////////////////////////////////

void  LLTimer::setTimerExpirySec(F32 expiration)
{
	mExpirationTicks = get_clock_count()
		+ (U64)((F32)(expiration * gClockFrequency));
}

F32 LLTimer::getRemainingTimeF32() const
{
	U64 cur_ticks = get_clock_count();
	if (cur_ticks > mExpirationTicks)
	{
		return 0.0f;
	}
	return F32((mExpirationTicks - cur_ticks) * gClockFrequencyInv);
}


BOOL  LLTimer::checkExpirationAndReset(F32 expiration)
{
	U64 cur_ticks = get_clock_count();
	if (cur_ticks < mExpirationTicks)
	{
		return FALSE;
	}

	mExpirationTicks = cur_ticks
		+ (U64)((F32)(expiration * gClockFrequency));
	return TRUE;
}


BOOL  LLTimer::hasExpired() const
{
	return (get_clock_count() >= mExpirationTicks)
		? TRUE : FALSE;
}

///////////////////////////////////////////////////////////////////////////////

BOOL LLTimer::knownBadTimer()
{
	BOOL failed = FALSE;

#if LL_WINDOWS
	WCHAR bad_pci_list[][10] = {L"1039:0530",
						        L"1039:0620",
							    L"10B9:0533",
							    L"10B9:1533",
							    L"1106:0596",
							    L"1106:0686",
							    L"1166:004F",
							    L"1166:0050",
 							    L"8086:7110",
							    L"\0"
	};

	HKEY hKey = NULL;
	LONG nResult = ::RegOpenKeyEx(HKEY_LOCAL_MACHINE,L"SYSTEM\\CurrentControlSet\\Enum\\PCI", 0,
								  KEY_EXECUTE | KEY_QUERY_VALUE | KEY_ENUMERATE_SUB_KEYS, &hKey);
	
	WCHAR name[1024];
	DWORD name_len = 1024;
	FILETIME scrap;

	S32 key_num = 0;
	WCHAR pci_id[10];

	wcscpy(pci_id, L"0000:0000");	 /*Flawfinder: ignore*/

	while (nResult == ERROR_SUCCESS)
	{
		nResult = ::RegEnumKeyEx(hKey, key_num++, name, &name_len, NULL, NULL, NULL, &scrap);

		if (nResult == ERROR_SUCCESS)
		{
			memcpy(&pci_id[0],&name[4],4);		/* Flawfinder: ignore */
			memcpy(&pci_id[5],&name[13],4);		/* Flawfinder: ignore */

			for (S32 check = 0; bad_pci_list[check][0]; check++)
			{
				if (!wcscmp(pci_id, bad_pci_list[check]))
				{
//					llwarns << "unreliable PCI chipset found!! " << pci_id << endl;
					failed = TRUE;
					break;
				}
			}
//			llinfo << "PCI chipset found: " << pci_id << endl;
			name_len = 1024;
		}
	}
#endif
	return(failed);
}

///////////////////////////////////////////////////////////////////////////////
// 
// NON-MEMBER FUNCTIONS
//
///////////////////////////////////////////////////////////////////////////////

time_t time_corrected()
{
	return time(NULL) + gUTCOffset;
}


// Is the current computer (in its current time zone)
// observing daylight savings time?
BOOL is_daylight_savings()
{
	time_t now = time(NULL);

	// Internal buffer to local server time
	struct tm* internal_time = localtime(&now);
	// tm_isdst > 0  =>  daylight savings
	// tm_isdst = 0  =>  not daylight savings
	// tm_isdst < 0  =>  can't tell
	return (internal_time->tm_isdst > 0);
}


struct tm* utc_to_pacific_time(time_t utc_time, BOOL pacific_daylight_time)
{
	S32 pacific_offset_hours;
	if (pacific_daylight_time)
	{
		pacific_offset_hours = 7;
	}
	else
	{
		pacific_offset_hours = 8;
	}

	// We subtract off the PST/PDT offset _before_ getting
	// "UTC" time, because this will handle wrapping around
	// for 5 AM UTC -> 10 PM PDT of the previous day.
	utc_time -= pacific_offset_hours * MIN_PER_HOUR * SEC_PER_MIN;
 
	// Internal buffer to PST/PDT (see above)
	struct tm* internal_time = gmtime(&utc_time);

	/*
	// Don't do this, this won't correctly tell you if daylight savings is active in CA or not.
	if (pacific_daylight_time)
	{
		internal_time->tm_isdst = 1;
	}
	*/

	return internal_time;
}


void microsecondsToTimecodeString(U64 current_time, std::string& tcstring)
{
	U64 hours;
	U64 minutes;
	U64 seconds;
	U64 frames;
	U64 subframes;

	hours = current_time / (U64)3600000000ul;
	minutes = current_time / (U64)60000000;
	minutes %= 60;
	seconds = current_time / (U64)1000000;
	seconds %= 60;
	frames = current_time / (U64)41667;
	frames %= 24;
	subframes = current_time / (U64)42;
	subframes %= 100;

	tcstring = llformat("%3.3d:%2.2d:%2.2d:%2.2d.%2.2d",(int)hours,(int)minutes,(int)seconds,(int)frames,(int)subframes);
}


void secondsToTimecodeString(F32 current_time, std::string& tcstring)
{
	microsecondsToTimecodeString((U64)((F64)(SEC_TO_MICROSEC*current_time)), tcstring);
}


//////////////////////////////////////////////////////////////////////////////
//
//		LLEventTimer Implementation
//
//////////////////////////////////////////////////////////////////////////////

LLEventTimer::LLEventTimer(F32 period)
: mEventTimer()
{
	mPeriod = period;
}

LLEventTimer::LLEventTimer(const LLDate& time)
: mEventTimer()
{
	mPeriod = (F32)(time.secondsSinceEpoch() - LLDate::now().secondsSinceEpoch());
}


LLEventTimer::~LLEventTimer()
{
}

void LLEventTimer::updateClass() 
{
	std::list<LLEventTimer*> completed_timers;
	for (instance_iter iter = beginInstances(); iter != endInstances(); ) 
	{
		LLEventTimer& timer = *iter++;
		F32 et = timer.mEventTimer.getElapsedTimeF32();
		if (timer.mEventTimer.getStarted() && et > timer.mPeriod) {
			timer.mEventTimer.reset();
			if ( timer.tick() )
			{
				completed_timers.push_back( &timer );
			}
		}
	}

	if ( completed_timers.size() > 0 )
	{
		for (std::list<LLEventTimer*>::iterator completed_iter = completed_timers.begin(); 
			 completed_iter != completed_timers.end(); 
			 completed_iter++ ) 
		{
			delete *completed_iter;
		}
	}
}