Select Git revision
llfasttimer_class.cpp
-
Richard Nelson authoredRichard Nelson authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
llfasttimer_class.cpp 25.74 KiB
/**
* @file llfasttimer_class.cpp
* @brief Implementation of the fast timer.
*
* $LicenseInfo:firstyear=2004&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llfasttimer.h"
#include "llmemory.h"
#include "llprocessor.h"
#include "llsingleton.h"
#include "lltreeiterators.h"
#include "llsdserialize.h"
#include <boost/bind.hpp>
#if LL_WINDOWS
#include "lltimer.h"
#elif LL_LINUX || LL_SOLARIS
#include <sys/time.h>
#include <sched.h>
#include "lltimer.h"
#elif LL_DARWIN
#include <sys/time.h>
#include "lltimer.h" // get_clock_count()
#else
#error "architecture not supported"
#endif
//////////////////////////////////////////////////////////////////////////////
// statics
S32 LLFastTimer::sCurFrameIndex = -1;
S32 LLFastTimer::sLastFrameIndex = -1;
U64 LLFastTimer::sLastFrameTime = LLFastTimer::getCPUClockCount64();
bool LLFastTimer::sPauseHistory = 0;
bool LLFastTimer::sResetHistory = 0;
LLFastTimer::CurTimerData LLFastTimer::sCurTimerData;
BOOL LLFastTimer::sLog = FALSE;
std::string LLFastTimer::sLogName = "";
BOOL LLFastTimer::sMetricLog = FALSE;
LLMutex* LLFastTimer::sLogLock = NULL;
std::queue<LLSD> LLFastTimer::sLogQueue;
#define USE_RDTSC 0
#if LL_LINUX || LL_SOLARIS
U64 LLFastTimer::sClockResolution = 1000000000; // Nanosecond resolution
#else
U64 LLFastTimer::sClockResolution = 1000000; // Microsecond resolution
#endif
std::vector<LLFastTimer::FrameState>* LLFastTimer::sTimerInfos = NULL;
U64 LLFastTimer::sTimerCycles = 0;
U32 LLFastTimer::sTimerCalls = 0;
// FIXME: move these declarations to the relevant modules
// helper functions
typedef LLTreeDFSPostIter<LLFastTimer::NamedTimer, LLFastTimer::NamedTimer::child_const_iter> timer_tree_bottom_up_iterator_t;
static timer_tree_bottom_up_iterator_t begin_timer_tree_bottom_up(LLFastTimer::NamedTimer& id)
{
return timer_tree_bottom_up_iterator_t(&id,
boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::beginChildren), _1),
boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::endChildren), _1));
}
static timer_tree_bottom_up_iterator_t end_timer_tree_bottom_up()
{
return timer_tree_bottom_up_iterator_t();
}
typedef LLTreeDFSIter<LLFastTimer::NamedTimer, LLFastTimer::NamedTimer::child_const_iter> timer_tree_dfs_iterator_t;
static timer_tree_dfs_iterator_t begin_timer_tree(LLFastTimer::NamedTimer& id)
{
return timer_tree_dfs_iterator_t(&id,
boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::beginChildren), _1),
boost::bind(boost::mem_fn(&LLFastTimer::NamedTimer::endChildren), _1));
}
static timer_tree_dfs_iterator_t end_timer_tree()
{
return timer_tree_dfs_iterator_t();
}
// factory class that creates NamedTimers via static DeclareTimer objects
class NamedTimerFactory : public LLSingleton<NamedTimerFactory>
{
public:
NamedTimerFactory()
: mActiveTimerRoot(NULL),
mTimerRoot(NULL),
mAppTimer(NULL),
mRootFrameState(NULL)
{}
/*virtual */ void initSingleton()
{
mTimerRoot = new LLFastTimer::NamedTimer("root");
mActiveTimerRoot = new LLFastTimer::NamedTimer("Frame");
mActiveTimerRoot->setCollapsed(false);
mRootFrameState = new LLFastTimer::FrameState(mActiveTimerRoot);
mRootFrameState->mParent = &mTimerRoot->getFrameState();
mActiveTimerRoot->setParent(mTimerRoot);
mAppTimer = new LLFastTimer(mRootFrameState);
}
~NamedTimerFactory()
{
std::for_each(mTimers.begin(), mTimers.end(), DeletePairedPointer());
delete mAppTimer;
delete mActiveTimerRoot;
delete mTimerRoot;
delete mRootFrameState;
}
LLFastTimer::NamedTimer& createNamedTimer(const std::string& name)
{
timer_map_t::iterator found_it = mTimers.find(name);
if (found_it != mTimers.end())
{
return *found_it->second;
}
LLFastTimer::NamedTimer* timer = new LLFastTimer::NamedTimer(name);
timer->setParent(mTimerRoot);
mTimers.insert(std::make_pair(name, timer));
return *timer;
}
LLFastTimer::NamedTimer* getTimerByName(const std::string& name)
{
timer_map_t::iterator found_it = mTimers.find(name);
if (found_it != mTimers.end())
{
return found_it->second;
}
return NULL;
}
LLFastTimer::NamedTimer* getActiveRootTimer() { return mActiveTimerRoot; }
LLFastTimer::NamedTimer* getRootTimer() { return mTimerRoot; }
const LLFastTimer* getAppTimer() { return mAppTimer; }
LLFastTimer::FrameState& getRootFrameState() { return *mRootFrameState; }
typedef std::map<std::string, LLFastTimer::NamedTimer*> timer_map_t;
timer_map_t::iterator beginTimers() { return mTimers.begin(); }
timer_map_t::iterator endTimers() { return mTimers.end(); }
S32 timerCount() { return mTimers.size(); }
private:
timer_map_t mTimers;
LLFastTimer::NamedTimer* mActiveTimerRoot;
LLFastTimer::NamedTimer* mTimerRoot;
LLFastTimer* mAppTimer;
LLFastTimer::FrameState* mRootFrameState;
};
void update_cached_pointers_if_changed()
{
// detect when elements have moved and update cached pointers
static LLFastTimer::FrameState* sFirstTimerAddress = NULL;
if (&*(LLFastTimer::getFrameStateList().begin()) != sFirstTimerAddress)
{
LLFastTimer::DeclareTimer::updateCachedPointers();
}
sFirstTimerAddress = &*(LLFastTimer::getFrameStateList().begin());
}
LLFastTimer::DeclareTimer::DeclareTimer(const std::string& name, bool open )
: mTimer(NamedTimerFactory::instance().createNamedTimer(name))
{
mTimer.setCollapsed(!open);
mFrameState = &mTimer.getFrameState();
update_cached_pointers_if_changed();
}
LLFastTimer::DeclareTimer::DeclareTimer(const std::string& name)
: mTimer(NamedTimerFactory::instance().createNamedTimer(name))
{
mFrameState = &mTimer.getFrameState();
update_cached_pointers_if_changed();
}
// static
void LLFastTimer::DeclareTimer::updateCachedPointers()
{
DeclareTimer::LLInstanceTrackerScopedGuard guard;
// propagate frame state pointers to timer declarations
for (DeclareTimer::instance_iter it = guard.beginInstances();
it != guard.endInstances();
++it)
{
// update cached pointer
it->mFrameState = &it->mTimer.getFrameState();
}
// also update frame states of timers on stack
LLFastTimer* cur_timerp = LLFastTimer::sCurTimerData.mCurTimer;
while(cur_timerp->mLastTimerData.mCurTimer != cur_timerp)
{
cur_timerp->mFrameState = &cur_timerp->mFrameState->mTimer->getFrameState();
cur_timerp = cur_timerp->mLastTimerData.mCurTimer;
}
}
//static
#if (LL_DARWIN || LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__))
U64 LLFastTimer::countsPerSecond() // counts per second for the *32-bit* timer
{
return sClockResolution >> 8;
}
#else // windows or x86-mac or x86-linux or x86-solaris
U64 LLFastTimer::countsPerSecond() // counts per second for the *32-bit* timer
{
#if USE_RDTSC || !LL_WINDOWS
//getCPUFrequency returns MHz and sCPUClockFrequency wants to be in Hz
static U64 sCPUClockFrequency = U64(LLProcessorInfo().getCPUFrequency()*1000000.0);
// we drop the low-order byte in our timers, so report a lower frequency
#else
// If we're not using RDTSC, each fasttimer tick is just a performance counter tick.
// Not redefining the clock frequency itself (in llprocessor.cpp/calculate_cpu_frequency())
// since that would change displayed MHz stats for CPUs
static bool firstcall = true;
static U64 sCPUClockFrequency;
if (firstcall)
{
QueryPerformanceFrequency((LARGE_INTEGER*)&sCPUClockFrequency);
firstcall = false;
}
#endif
return sCPUClockFrequency >> 8;
}
#endif
LLFastTimer::FrameState::FrameState(LLFastTimer::NamedTimer* timerp)
: mActiveCount(0),
mCalls(0),
mSelfTimeCounter(0),
mParent(NULL),
mLastCaller(NULL),
mMoveUpTree(false),
mTimer(timerp)
{}
LLFastTimer::NamedTimer::NamedTimer(const std::string& name)
: mName(name),
mCollapsed(true),
mParent(NULL),
mTotalTimeCounter(0),
mCountAverage(0),
mCallAverage(0),
mNeedsSorting(false)
{
info_list_t& frame_state_list = getFrameStateList();
mFrameStateIndex = frame_state_list.size();
getFrameStateList().push_back(FrameState(this));
mCountHistory = new U32[HISTORY_NUM];
memset(mCountHistory, 0, sizeof(U32) * HISTORY_NUM);
mCallHistory = new U32[HISTORY_NUM];
memset(mCallHistory, 0, sizeof(U32) * HISTORY_NUM);
}
LLFastTimer::NamedTimer::~NamedTimer()
{
delete[] mCountHistory;
delete[] mCallHistory;
}
std::string LLFastTimer::NamedTimer::getToolTip(S32 history_idx)
{
if (history_idx < 0)
{
// by default, show average number of calls
return llformat("%s (%d calls)", getName().c_str(), (S32)getCallAverage());
}
else
{
return llformat("%s (%d calls)", getName().c_str(), (S32)getHistoricalCalls(history_idx));
}
}
void LLFastTimer::NamedTimer::setParent(NamedTimer* parent)
{
llassert_always(parent != this);
llassert_always(parent != NULL);
if (mParent)
{
// subtract our accumulated from previous parent
for (S32 i = 0; i < HISTORY_NUM; i++)
{
mParent->mCountHistory[i] -= mCountHistory[i];
}
// subtract average timing from previous parent
mParent->mCountAverage -= mCountAverage;
std::vector<NamedTimer*>& children = mParent->getChildren();
std::vector<NamedTimer*>::iterator found_it = std::find(children.begin(), children.end(), this);
if (found_it != children.end())
{
children.erase(found_it);
}
}
mParent = parent;
if (parent)
{
getFrameState().mParent = &parent->getFrameState();
parent->getChildren().push_back(this);
parent->mNeedsSorting = true;
}
}
S32 LLFastTimer::NamedTimer::getDepth()
{
S32 depth = 0;
NamedTimer* timerp = mParent;
while(timerp)
{
depth++;
timerp = timerp->mParent;
}
return depth;
}
// static
void LLFastTimer::NamedTimer::processTimes()
{
if (sCurFrameIndex < 0) return;
buildHierarchy();
accumulateTimings();
}
// sort timer info structs by depth first traversal order
struct SortTimersDFS
{
bool operator()(const LLFastTimer::FrameState& i1, const LLFastTimer::FrameState& i2)
{
return i1.mTimer->getFrameStateIndex() < i2.mTimer->getFrameStateIndex();
}
};
// sort child timers by name
struct SortTimerByName
{
bool operator()(const LLFastTimer::NamedTimer* i1, const LLFastTimer::NamedTimer* i2)
{
return i1->getName() < i2->getName();
}
};
//static
void LLFastTimer::NamedTimer::buildHierarchy()
{
if (sCurFrameIndex < 0 ) return;
// set up initial tree
{
NamedTimer::LLInstanceTrackerScopedGuard guard;
for (instance_iter it = guard.beginInstances();
it != guard.endInstances();
++it)
{
NamedTimer& timer = *it;
if (&timer == NamedTimerFactory::instance().getRootTimer()) continue;
// bootstrap tree construction by attaching to last timer to be on stack
// when this timer was called
if (timer.getFrameState().mLastCaller && timer.mParent == NamedTimerFactory::instance().getRootTimer())
{
timer.setParent(timer.getFrameState().mLastCaller->mTimer);
// no need to push up tree on first use, flag can be set spuriously
timer.getFrameState().mMoveUpTree = false;
}
}
}
// bump timers up tree if they've been flagged as being in the wrong place
// do this in a bottom up order to promote descendants first before promoting ancestors
// this preserves partial order derived from current frame's observations
for(timer_tree_bottom_up_iterator_t it = begin_timer_tree_bottom_up(*NamedTimerFactory::instance().getRootTimer());
it != end_timer_tree_bottom_up();
++it)
{
NamedTimer* timerp = *it;
// skip root timer
if (timerp == NamedTimerFactory::instance().getRootTimer()) continue;
if (timerp->getFrameState().mMoveUpTree)
{
// since ancestors have already been visited, reparenting won't affect tree traversal
//step up tree, bringing our descendants with us
//llinfos << "Moving " << timerp->getName() << " from child of " << timerp->getParent()->getName() <<
// " to child of " << timerp->getParent()->getParent()->getName() << llendl;
timerp->setParent(timerp->getParent()->getParent());
timerp->getFrameState().mMoveUpTree = false;
// don't bubble up any ancestors until descendants are done bubbling up
it.skipAncestors();
}
}
// sort timers by time last called, so call graph makes sense
for(timer_tree_dfs_iterator_t it = begin_timer_tree(*NamedTimerFactory::instance().getRootTimer());
it != end_timer_tree();
++it)
{
NamedTimer* timerp = (*it);
if (timerp->mNeedsSorting)
{
std::sort(timerp->getChildren().begin(), timerp->getChildren().end(), SortTimerByName());
}
timerp->mNeedsSorting = false;
}
}
//static
void LLFastTimer::NamedTimer::accumulateTimings()
{
U32 cur_time = getCPUClockCount32();
// walk up stack of active timers and accumulate current time while leaving timing structures active
LLFastTimer* cur_timer = sCurTimerData.mCurTimer;
// root defined by parent pointing to self
CurTimerData* cur_data = &sCurTimerData;
while(cur_timer->mLastTimerData.mCurTimer != cur_timer)
{
U32 cumulative_time_delta = cur_time - cur_timer->mStartTime;
U32 self_time_delta = cumulative_time_delta - cur_data->mChildTime;
cur_data->mChildTime = 0;
cur_timer->mFrameState->mSelfTimeCounter += self_time_delta;
cur_timer->mStartTime = cur_time;
cur_data = &cur_timer->mLastTimerData;
cur_data->mChildTime += cumulative_time_delta;
cur_timer = cur_timer->mLastTimerData.mCurTimer;
}
// traverse tree in DFS post order, or bottom up
for(timer_tree_bottom_up_iterator_t it = begin_timer_tree_bottom_up(*NamedTimerFactory::instance().getActiveRootTimer());
it != end_timer_tree_bottom_up();
++it)
{
NamedTimer* timerp = (*it);
timerp->mTotalTimeCounter = timerp->getFrameState().mSelfTimeCounter;
for (child_const_iter child_it = timerp->beginChildren(); child_it != timerp->endChildren(); ++child_it)
{
timerp->mTotalTimeCounter += (*child_it)->mTotalTimeCounter;
}
S32 cur_frame = sCurFrameIndex;
if (cur_frame >= 0)
{
// update timer history
int hidx = cur_frame % HISTORY_NUM;
timerp->mCountHistory[hidx] = timerp->mTotalTimeCounter;
timerp->mCountAverage = ((U64)timerp->mCountAverage * cur_frame + timerp->mTotalTimeCounter) / (cur_frame+1);
timerp->mCallHistory[hidx] = timerp->getFrameState().mCalls;
timerp->mCallAverage = ((U64)timerp->mCallAverage * cur_frame + timerp->getFrameState().mCalls) / (cur_frame+1);
}
}
}
// static
void LLFastTimer::NamedTimer::resetFrame()
{
if (sLog)
{ //output current frame counts to performance log
static S32 call_count = 0;
if (call_count % 100 == 0)
{
llinfos << "countsPerSecond (32 bit): " << countsPerSecond() << llendl;
llinfos << "get_clock_count (64 bit): " << get_clock_count() << llendl;
llinfos << "LLProcessorInfo().getCPUFrequency() " << LLProcessorInfo().getCPUFrequency() << llendl;
llinfos << "getCPUClockCount32() " << getCPUClockCount32() << llendl;
llinfos << "getCPUClockCount64() " << getCPUClockCount64() << llendl;
llinfos << "elapsed sec " << ((F64)getCPUClockCount64())/((F64)LLProcessorInfo().getCPUFrequency()*1000000.0) << llendl;
}
call_count++;
F64 iclock_freq = 1000.0 / countsPerSecond(); // good place to calculate clock frequency
F64 total_time = 0;
LLSD sd;
{
NamedTimer::LLInstanceTrackerScopedGuard guard;
for (NamedTimer::instance_iter it = guard.beginInstances();
it != guard.endInstances();
++it)
{
NamedTimer& timer = *it;
FrameState& info = timer.getFrameState();
sd[timer.getName()]["Time"] = (LLSD::Real) (info.mSelfTimeCounter*iclock_freq);
sd[timer.getName()]["Calls"] = (LLSD::Integer) info.mCalls;
// computing total time here because getting the root timer's getCountHistory
// doesn't work correctly on the first frame
total_time = total_time + info.mSelfTimeCounter * iclock_freq;
}
}
sd["Total"]["Time"] = (LLSD::Real) total_time;
sd["Total"]["Calls"] = (LLSD::Integer) 1;
{
LLMutexLock lock(sLogLock);
sLogQueue.push(sd);
}
}
// tag timers by position in depth first traversal of tree
S32 index = 0;
for(timer_tree_dfs_iterator_t it = begin_timer_tree(*NamedTimerFactory::instance().getRootTimer());
it != end_timer_tree();
++it)
{
NamedTimer* timerp = (*it);
timerp->mFrameStateIndex = index;
index++;
llassert_always(timerp->mFrameStateIndex < (S32)getFrameStateList().size());
}
// sort timers by dfs traversal order to improve cache coherency
std::sort(getFrameStateList().begin(), getFrameStateList().end(), SortTimersDFS());
// update pointers into framestatelist now that we've sorted it
DeclareTimer::updateCachedPointers();
// reset for next frame
{
NamedTimer::LLInstanceTrackerScopedGuard guard;
for (NamedTimer::instance_iter it = guard.beginInstances();
it != guard.endInstances();
++it)
{
NamedTimer& timer = *it;
FrameState& info = timer.getFrameState();
info.mSelfTimeCounter = 0;
info.mCalls = 0;
info.mLastCaller = NULL;
info.mMoveUpTree = false;
// update parent pointer in timer state struct
if (timer.mParent)
{
info.mParent = &timer.mParent->getFrameState();
}
}
}
//sTimerCycles = 0;
//sTimerCalls = 0;
}
//static
void LLFastTimer::NamedTimer::reset()
{
resetFrame(); // reset frame data
// walk up stack of active timers and reset start times to current time
// effectively zeroing out any accumulated time
U32 cur_time = getCPUClockCount32();
// root defined by parent pointing to self
CurTimerData* cur_data = &sCurTimerData;
LLFastTimer* cur_timer = cur_data->mCurTimer;
while(cur_timer->mLastTimerData.mCurTimer != cur_timer)
{
cur_timer->mStartTime = cur_time;
cur_data->mChildTime = 0;
cur_data = &cur_timer->mLastTimerData;
cur_timer = cur_data->mCurTimer;
}
// reset all history
{
NamedTimer::LLInstanceTrackerScopedGuard guard;
for (NamedTimer::instance_iter it = guard.beginInstances();
it != guard.endInstances();
++it)
{
NamedTimer& timer = *it;
if (&timer != NamedTimerFactory::instance().getRootTimer())
{
timer.setParent(NamedTimerFactory::instance().getRootTimer());
}
timer.mCountAverage = 0;
timer.mCallAverage = 0;
memset(timer.mCountHistory, 0, sizeof(U32) * HISTORY_NUM);
memset(timer.mCallHistory, 0, sizeof(U32) * HISTORY_NUM);
}
}
sLastFrameIndex = 0;
sCurFrameIndex = 0;
}
//static
LLFastTimer::info_list_t& LLFastTimer::getFrameStateList()
{
if (!sTimerInfos)
{
sTimerInfos = new info_list_t();
}
return *sTimerInfos;
}
U32 LLFastTimer::NamedTimer::getHistoricalCount(S32 history_index) const
{
S32 history_idx = (getLastFrameIndex() + history_index) % LLFastTimer::NamedTimer::HISTORY_NUM;
return mCountHistory[history_idx];
}
U32 LLFastTimer::NamedTimer::getHistoricalCalls(S32 history_index ) const
{
S32 history_idx = (getLastFrameIndex() + history_index) % LLFastTimer::NamedTimer::HISTORY_NUM;
return mCallHistory[history_idx];
}
LLFastTimer::FrameState& LLFastTimer::NamedTimer::getFrameState() const
{
llassert_always(mFrameStateIndex >= 0);
if (this == NamedTimerFactory::instance().getActiveRootTimer())
{
return NamedTimerFactory::instance().getRootFrameState();
}
return getFrameStateList()[mFrameStateIndex];
}
// static
LLFastTimer::NamedTimer& LLFastTimer::NamedTimer::getRootNamedTimer()
{
return *NamedTimerFactory::instance().getActiveRootTimer();
}
std::vector<LLFastTimer::NamedTimer*>::const_iterator LLFastTimer::NamedTimer::beginChildren()
{
return mChildren.begin();
}
std::vector<LLFastTimer::NamedTimer*>::const_iterator LLFastTimer::NamedTimer::endChildren()
{
return mChildren.end();
}
std::vector<LLFastTimer::NamedTimer*>& LLFastTimer::NamedTimer::getChildren()
{
return mChildren;
}
//static
void LLFastTimer::nextFrame()
{
countsPerSecond(); // good place to calculate clock frequency
U64 frame_time = getCPUClockCount64();
if ((frame_time - sLastFrameTime) >> 8 > 0xffffffff)
{
llinfos << "Slow frame, fast timers inaccurate" << llendl;
}
if (sPauseHistory)
{
sResetHistory = true;
}
else if (sResetHistory)
{
sLastFrameIndex = 0;
sCurFrameIndex = 0;
sResetHistory = false;
}
else // not paused
{
NamedTimer::processTimes();
sLastFrameIndex = sCurFrameIndex++;
}
// get ready for next frame
NamedTimer::resetFrame();
sLastFrameTime = frame_time;
}
//static
void LLFastTimer::dumpCurTimes()
{
// accumulate timings, etc.
NamedTimer::processTimes();
F64 clock_freq = (F64)countsPerSecond();
F64 iclock_freq = 1000.0 / clock_freq; // clock_ticks -> milliseconds
// walk over timers in depth order and output timings
for(timer_tree_dfs_iterator_t it = begin_timer_tree(*NamedTimerFactory::instance().getRootTimer());
it != end_timer_tree();
++it)
{
NamedTimer* timerp = (*it);
F64 total_time_ms = ((F64)timerp->getHistoricalCount(0) * iclock_freq);
// Don't bother with really brief times, keep output concise
if (total_time_ms < 0.1) continue;
std::ostringstream out_str;
for (S32 i = 0; i < timerp->getDepth(); i++)
{
out_str << "\t";
}
out_str << timerp->getName() << " "
<< std::setprecision(3) << total_time_ms << " ms, "
<< timerp->getHistoricalCalls(0) << " calls";
llinfos << out_str.str() << llendl;
}
}
//static
void LLFastTimer::reset()
{
NamedTimer::reset();
}
//static
void LLFastTimer::writeLog(std::ostream& os)
{
while (!sLogQueue.empty())
{
LLSD& sd = sLogQueue.front();
LLSDSerialize::toXML(sd, os);
LLMutexLock lock(sLogLock);
sLogQueue.pop();
}
}
//static
const LLFastTimer::NamedTimer* LLFastTimer::getTimerByName(const std::string& name)
{
return NamedTimerFactory::instance().getTimerByName(name);
}
LLFastTimer::LLFastTimer(LLFastTimer::FrameState* state)
: mFrameState(state)
{
U32 start_time = getCPUClockCount32();
mStartTime = start_time;
mFrameState->mActiveCount++;
LLFastTimer::sCurTimerData.mCurTimer = this;
LLFastTimer::sCurTimerData.mFrameState = mFrameState;
LLFastTimer::sCurTimerData.mChildTime = 0;
mLastTimerData = LLFastTimer::sCurTimerData;
}
//////////////////////////////////////////////////////////////////////////////
//
// Important note: These implementations must be FAST!
//
#if LL_WINDOWS
//
// Windows implementation of CPU clock
//
//
// NOTE: put back in when we aren't using platform sdk anymore
//
// because MS has different signatures for these functions in winnt.h
// need to rename them to avoid conflicts
//#define _interlockedbittestandset _renamed_interlockedbittestandset
//#define _interlockedbittestandreset _renamed_interlockedbittestandreset
//#include <intrin.h>
//#undef _interlockedbittestandset
//#undef _interlockedbittestandreset
//inline U32 LLFastTimer::getCPUClockCount32()
//{
// U64 time_stamp = __rdtsc();
// return (U32)(time_stamp >> 8);
//}
//
//// return full timer value, *not* shifted by 8 bits
//inline U64 LLFastTimer::getCPUClockCount64()
//{
// return __rdtsc();
//}
// shift off lower 8 bits for lower resolution but longer term timing
// on 1Ghz machine, a 32-bit word will hold ~1000 seconds of timing
#if USE_RDTSC
U32 LLFastTimer::getCPUClockCount32()
{
U32 ret_val;
__asm
{
_emit 0x0f
_emit 0x31
shr eax,8
shl edx,24
or eax, edx
mov dword ptr [ret_val], eax
}
return ret_val;
}
// return full timer value, *not* shifted by 8 bits
U64 LLFastTimer::getCPUClockCount64()
{
U64 ret_val;
__asm
{
_emit 0x0f
_emit 0x31
mov eax,eax
mov edx,edx
mov dword ptr [ret_val+4], edx
mov dword ptr [ret_val], eax
}
return ret_val;
}
std::string LLFastTimer::sClockType = "rdtsc";
#else
//LL_COMMON_API U64 get_clock_count(); // in lltimer.cpp
// These use QueryPerformanceCounter, which is arguably fine and also works on amd architectures.
U32 LLFastTimer::getCPUClockCount32()
{
return (U32)(get_clock_count()>>8);
}
U64 LLFastTimer::getCPUClockCount64()
{
return get_clock_count();
}
std::string LLFastTimer::sClockType = "QueryPerformanceCounter";
#endif
#endif
#if (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__))
//
// Linux and Solaris implementation of CPU clock - non-x86.
// This is accurate but SLOW! Only use out of desperation.
//
// Try to use the MONOTONIC clock if available, this is a constant time counter
// with nanosecond resolution (but not necessarily accuracy) and attempts are
// made to synchronize this value between cores at kernel start. It should not
// be affected by CPU frequency. If not available use the REALTIME clock, but
// this may be affected by NTP adjustments or other user activity affecting
// the system time.
U64 LLFastTimer::getCPUClockCount64()
{
struct timespec tp;
#ifdef CLOCK_MONOTONIC // MONOTONIC supported at build-time?
if (-1 == clock_gettime(CLOCK_MONOTONIC,&tp)) // if MONOTONIC isn't supported at runtime then ouch, try REALTIME
#endif
clock_gettime(CLOCK_REALTIME,&tp);
return (tp.tv_sec*LLFastTimer::sClockResolution)+tp.tv_nsec;
}
U32 LLFastTimer::getCPUClockCount32()
{
return (U32)(LLFastTimer::getCPUClockCount64() >> 8);
}
std::string LLFastTimer::sClockType = "clock_gettime";
#endif // (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__))
#if (LL_LINUX || LL_SOLARIS || LL_DARWIN) && (defined(__i386__) || defined(__amd64__))
//
// Mac+Linux+Solaris FAST x86 implementation of CPU clock
U32 LLFastTimer::getCPUClockCount32()
{
U64 x;
__asm__ volatile (".byte 0x0f, 0x31": "=A"(x));
return (U32)(x >> 8);
}
U64 LLFastTimer::getCPUClockCount64()
{
U64 x;
__asm__ volatile (".byte 0x0f, 0x31": "=A"(x));
return x;
}
std::string LLFastTimer::sClockType = "rdtsc";
#endif