Skip to content
Snippets Groups Projects
Commit 1426bcba authored by Tofu Buzzard's avatar Tofu Buzzard
Browse files

FIX VWR-24509 Fix SSAO speckling artifacts at distance, re-enable distant SSAO

followup - remove the distance limiting, re-enabling distant SSAO.
(transplanted from d11eafacb2609537905718fa559e81b53e6740f8)
parent 951f4af7
No related branches found
No related tags found
No related merge requests found
...@@ -53,57 +53,49 @@ float calcAmbientOcclusion(vec4 pos, vec3 norm) ...@@ -53,57 +53,49 @@ float calcAmbientOcclusion(vec4 pos, vec3 norm)
{ {
float ret = 1.0; float ret = 1.0;
float dist = dot(pos.xyz,pos.xyz); vec2 kern[8];
// exponentially (^2) distant occlusion samples spread around origin
if (dist < 64.0*64.0) kern[0] = vec2(-1.0, 0.0) * 0.125*0.125;
{ kern[1] = vec2(1.0, 0.0) * 0.250*0.250;
vec2 kern[8]; kern[2] = vec2(0.0, 1.0) * 0.375*0.375;
// exponentially (^2) distant occlusion samples spread around origin kern[3] = vec2(0.0, -1.0) * 0.500*0.500;
kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625;
kern[1] = vec2(1.0, 0.0) * 0.250*0.250; kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750;
kern[2] = vec2(0.0, 1.0) * 0.375*0.375; kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875;
kern[3] = vec2(0.0, -1.0) * 0.500*0.500; kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000;
kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625;
kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750;
kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875;
kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000;
vec2 pos_screen = vary_fragcoord.xy; vec2 pos_screen = vary_fragcoord.xy;
vec3 pos_world = pos.xyz; vec3 pos_world = pos.xyz;
vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy; vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy;
float angle_hidden = 0.0; float angle_hidden = 0.0;
int points = 0; int points = 0;
float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); float scale = min(ssao_radius / -pos_world.z, ssao_max_radius);
// it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations unrolling?)
for (int i = 0; i < 8; i++) for (int i = 0; i < 8; i++)
{ {
vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect); vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect);
vec3 samppos_world = getPosition(samppos_screen).xyz; vec3 samppos_world = getPosition(samppos_screen).xyz;
vec3 diff = pos_world - samppos_world; vec3 diff = pos_world - samppos_world;
float dist2 = dot(diff, diff); float dist2 = dot(diff, diff);
// assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area
// --> solid angle shrinking by the square of distance // --> solid angle shrinking by the square of distance
//radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2
//(k should vary inversely with # of samples, but this is taken care of later) //(k should vary inversely with # of samples, but this is taken care of later)
//if (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) // -0.05*norm to shift sample point back slightly for flat surfaces angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv);
// angle_hidden += min(1.0/dist2, ssao_factor_inv); // dist != 0 follows from conditional. max of 1.0 (= ssao_factor_inv * ssao_factor)
angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv);
// 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion"
points = points + int(diff.z > -1.0); points = points + int(diff.z > -1.0);
} }
angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0); angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0);
ret = (1.0 - (float(points != 0) * angle_hidden)); ret = (1.0 - (float(points != 0) * angle_hidden));
ret += max((dist-32.0*32.0)/(32.0*32.0), 0.0);
}
return min(ret, 1.0); return min(ret, 1.0);
} }
......
...@@ -62,58 +62,50 @@ vec4 getPosition(vec2 pos_screen) ...@@ -62,58 +62,50 @@ vec4 getPosition(vec2 pos_screen)
float calcAmbientOcclusion(vec4 pos, vec3 norm) float calcAmbientOcclusion(vec4 pos, vec3 norm)
{ {
float ret = 1.0; float ret = 1.0;
float dist = dot(pos.xyz,pos.xyz);
if (dist < 64.0*64.0)
{
vec2 kern[8];
// exponentially (^2) distant occlusion samples spread around origin
kern[0] = vec2(-1.0, 0.0) * 0.125*0.125;
kern[1] = vec2(1.0, 0.0) * 0.250*0.250;
kern[2] = vec2(0.0, 1.0) * 0.375*0.375;
kern[3] = vec2(0.0, -1.0) * 0.500*0.500;
kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625;
kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750;
kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875;
kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000;
vec2 pos_screen = vary_fragcoord.xy; vec2 kern[8];
vec3 pos_world = pos.xyz; // exponentially (^2) distant occlusion samples spread around origin
vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy; kern[0] = vec2(-1.0, 0.0) * 0.125*0.125;
kern[1] = vec2(1.0, 0.0) * 0.250*0.250;
kern[2] = vec2(0.0, 1.0) * 0.375*0.375;
kern[3] = vec2(0.0, -1.0) * 0.500*0.500;
kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625;
kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750;
kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875;
kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000;
vec2 pos_screen = vary_fragcoord.xy;
vec3 pos_world = pos.xyz;
vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy;
float angle_hidden = 0.0; float angle_hidden = 0.0;
int points = 0; int points = 0;
float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); float scale = min(ssao_radius / -pos_world.z, ssao_max_radius);
// it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?)
for (int i = 0; i < 8; i++) for (int i = 0; i < 8; i++)
{ {
vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect); vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect);
vec3 samppos_world = getPosition(samppos_screen).xyz; vec3 samppos_world = getPosition(samppos_screen).xyz;
vec3 diff = pos_world - samppos_world; vec3 diff = pos_world - samppos_world;
float dist2 = dot(diff, diff); float dist2 = dot(diff, diff);
// assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area
// --> solid angle shrinking by the square of distance // --> solid angle shrinking by the square of distance
//radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2
//(k should vary inversely with # of samples, but this is taken care of later) //(k should vary inversely with # of samples, but this is taken care of later)
//if (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) // -0.05*norm to shift sample point back slightly for flat surfaces angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv);
// angle_hidden += min(1.0/dist2, ssao_factor_inv); // dist != 0 follows from conditional. max of 1.0 (= ssao_factor_inv * ssao_factor)
angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv);
// 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion"
points = points + int(diff.z > -1.0); points = points + int(diff.z > -1.0);
} }
angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0); angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0);
ret = (1.0 - (float(points != 0) * angle_hidden)); ret = (1.0 - (float(points != 0) * angle_hidden));
ret += max((dist-32.0*32.0)/(32.0*32.0), 0.0);
}
return min(ret, 1.0); return min(ret, 1.0);
} }
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment