Skip to content
Snippets Groups Projects
Commit dd1cc2f3 authored by Graham Linden's avatar Graham Linden
Browse files

Fix sky and cloud shader usage of density_multiplier (not re-ranged from FS to WL).

Remove all refs to now unused calcFragAtmospherics.
parent f30a649f
No related branches found
No related tags found
No related merge requests found
Showing with 16 additions and 199 deletions
...@@ -103,10 +103,11 @@ void main() ...@@ -103,10 +103,11 @@ void main()
vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color; vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
vec4 light_atten; vec4 light_atten;
float dens_mul = density_multiplier * 0.5;
// Sunlight attenuation effect (hue and brightness) due to atmosphere // Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes // this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y); light_atten = (blue_density + vec4(haze_density * 0.25)) * (dens_mul * max_y);
// Calculate relative weights // Calculate relative weights
temp1 = blue_density + haze_density; temp1 = blue_density + haze_density;
...@@ -119,7 +120,7 @@ void main() ...@@ -119,7 +120,7 @@ void main()
sunlight *= exp( - light_atten * temp2.y); sunlight *= exp( - light_atten * temp2.y);
// Distance // Distance
temp2.z = Plen * density_multiplier; temp2.z = Plen * dens_mul;
// Transparency (-> temp1) // Transparency (-> temp1)
// ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati // ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati
......
...@@ -87,10 +87,11 @@ void main() ...@@ -87,10 +87,11 @@ void main()
vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color; vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
vec4 light_atten; vec4 light_atten;
float dens_mul = density_multiplier * 0.5;
// Sunlight attenuation effect (hue and brightness) due to atmosphere // Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes // this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y); light_atten = (blue_density + vec4(haze_density * 0.25)) * (dens_mul * max_y);
// Calculate relative weights // Calculate relative weights
temp1 = blue_density + haze_density; temp1 = blue_density + haze_density;
...@@ -103,7 +104,7 @@ void main() ...@@ -103,7 +104,7 @@ void main()
sunlight *= exp( - light_atten * temp2.y); sunlight *= exp( - light_atten * temp2.y);
// Distance // Distance
temp2.z = Plen * density_multiplier; temp2.z = Plen * dens_mul;
// Transparency (-> temp1) // Transparency (-> temp1)
// ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati // ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati
......
...@@ -46,8 +46,3 @@ vec3 atmosLighting(vec3 light) ...@@ -46,8 +46,3 @@ vec3 atmosLighting(vec3 light)
return light; return light;
} }
void calcFragAtmospherics(vec3 inPositionEye, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 atten, out vec3 additive)
{
/* stub function for fallback compatibility on class1 hardware */
}
...@@ -42,10 +42,6 @@ uniform mat3 ssao_effect_mat; ...@@ -42,10 +42,6 @@ uniform mat3 ssao_effect_mat;
uniform int no_atmo; uniform int no_atmo;
uniform float sun_moon_glow_factor; uniform float sun_moon_glow_factor;
vec3 nothing() {
return vec3(0, 0, 0);
}
void calcAtmosphericVars(vec3 inPositionEye, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive, out vec3 atten) { void calcAtmosphericVars(vec3 inPositionEye, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive, out vec3 atten) {
vec3 P = inPositionEye; vec3 P = inPositionEye;
......
...@@ -117,10 +117,11 @@ void main() ...@@ -117,10 +117,11 @@ void main()
vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color; vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
vec4 light_atten; vec4 light_atten;
float dens_mul = density_multiplier * 0.5;
// Sunlight attenuation effect (hue and brightness) due to atmosphere // Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes // this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y); light_atten = (blue_density + vec4(haze_density * 0.25)) * (dens_mul * max_y);
// Calculate relative weights // Calculate relative weights
temp1 = blue_density + haze_density; temp1 = blue_density + haze_density;
...@@ -133,7 +134,7 @@ void main() ...@@ -133,7 +134,7 @@ void main()
sunlight *= exp( - light_atten * temp2.y); sunlight *= exp( - light_atten * temp2.y);
// Distance // Distance
temp2.z = Plen * density_multiplier; temp2.z = Plen * dens_mul;
// Transparency (-> temp1) // Transparency (-> temp1)
// ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati // ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati
......
...@@ -37,8 +37,6 @@ uniform vec4 blue_density; ...@@ -37,8 +37,6 @@ uniform vec4 blue_density;
uniform float haze_horizon; uniform float haze_horizon;
uniform float haze_density; uniform float haze_density;
uniform float cloud_shadow; uniform float cloud_shadow;
uniform float density_multiplier;
uniform float distance_multiplier;
uniform float max_y; uniform float max_y;
uniform vec4 glow; uniform vec4 glow;
uniform float scene_light_strength; uniform float scene_light_strength;
...@@ -64,97 +62,3 @@ vec3 atmosLighting(vec3 light) ...@@ -64,97 +62,3 @@ vec3 atmosLighting(vec3 light)
{ {
return atmosFragLighting(light, getAdditiveColor(), getAtmosAttenuation()); return atmosFragLighting(light, getAdditiveColor(), getAtmosAttenuation());
} }
void calcFragAtmospherics(vec3 inPositionEye, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive, out vec3 atten) {
vec3 P = inPositionEye;
//(TERRAIN) limit altitude
if (P.y > max_y) P *= (max_y / P.y);
if (P.y < -max_y) P *= (-max_y / P.y);
vec3 tmpLightnorm = lightnorm.xyz;
vec3 Pn = normalize(P);
float Plen = length(P);
vec4 temp1 = vec4(0);
vec3 temp2 = vec3(0);
vec4 blue_weight;
vec4 haze_weight;
vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
vec4 light_atten;
//sunlight attenuation effect (hue and brightness) due to atmosphere
//this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y);
//I had thought blue_density and haze_density should have equal weighting,
//but attenuation due to haze_density tends to seem too strong
temp1 = blue_density + vec4(haze_density);
blue_weight = blue_density / temp1;
haze_weight = vec4(haze_density) / temp1;
//(TERRAIN) compute sunlight from lightnorm only (for short rays like terrain)
temp2.y = max(0.0, tmpLightnorm.y);
if (temp2.y > 0.001f)
{
temp2.y = 1. / temp2.y;
}
temp2.y = max(0.001f, temp2.y);
sunlight *= exp(-light_atten * temp2.y);
// main atmospheric scattering line integral
temp2.z = Plen * density_multiplier;
// Transparency (-> temp1)
// ATI Bugfix -- can't store temp1*temp2.z*distance_multiplier in a variable because the ati
// compiler gets confused.
temp1 = exp(-temp1 * temp2.z * distance_multiplier);
//final atmosphere attenuation factor
atten = temp1.rgb;
//compute haze glow
//(can use temp2.x as temp because we haven't used it yet)
temp2.x = dot(Pn, tmpLightnorm.xyz);
temp2.x = 1. - temp2.x;
//temp2.x is 0 at the sun and increases away from sun
temp2.x = max(temp2.x, .03); //was glow.y
//set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
temp2.x *= glow.x;
//higher glow.x gives dimmer glow (because next step is 1 / "angle")
temp2.x = pow(temp2.x, glow.z);
//glow.z should be negative, so we're doing a sort of (1 / "angle") function
//add "minimum anti-solar illumination"
temp2.x += .25;
temp2.x *= sun_moon_glow_factor;
//increase ambient when there are more clouds
vec4 tmpAmbient = ambient + (vec4(1.) - ambient) * cloud_shadow * 0.5;
/* decrease value and saturation (that in HSV, not HSL) for occluded areas
* // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html
* // The following line of code performs the equivalent of:
* float ambAlpha = tmpAmbient.a;
* float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis
* vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue);
* tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat, ambAlpha);
*/
tmpAmbient = vec4(mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor), tmpAmbient.a);
//haze color
additive =
vec3(blue_horizon * blue_weight * (sunlight*(1.-cloud_shadow) + tmpAmbient)
+ (haze_horizon * haze_weight) * (sunlight*(1.-cloud_shadow) * temp2.x
+ tmpAmbient));
//brightness of surface both sunlight and ambient
sunlit = vec3(sunlight.rgb);
amblit = vec3(tmpAmbient * .25);
additive = normalize(additive);
additive *= vec3(1.0 - exp(-temp2.z * distance_multiplier)) * 0.5;
}
...@@ -103,10 +103,11 @@ void main() ...@@ -103,10 +103,11 @@ void main()
vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color; vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
vec4 light_atten; vec4 light_atten;
float dens_mul = density_multiplier * 0.5;
// Sunlight attenuation effect (hue and brightness) due to atmosphere // Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes // this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y); light_atten = (blue_density + vec4(haze_density * 0.25)) * (dens_mul * max_y);
// Calculate relative weights // Calculate relative weights
temp1 = blue_density + haze_density; temp1 = blue_density + haze_density;
...@@ -119,7 +120,7 @@ void main() ...@@ -119,7 +120,7 @@ void main()
sunlight *= exp( - light_atten * temp2.y); sunlight *= exp( - light_atten * temp2.y);
// Distance // Distance
temp2.z = Plen * density_multiplier; temp2.z = Plen * dens_mul;
// Transparency (-> temp1) // Transparency (-> temp1)
// ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati // ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati
......
...@@ -87,9 +87,11 @@ void main() ...@@ -87,9 +87,11 @@ void main()
vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color; vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
vec4 light_atten; vec4 light_atten;
float dens_mul = density_multiplier * 0.5;
// Sunlight attenuation effect (hue and brightness) due to atmosphere // Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes // this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y); light_atten = (blue_density + vec4(haze_density * 0.25)) * (dens_mul * max_y);
// Calculate relative weights // Calculate relative weights
temp1 = blue_density + haze_density; temp1 = blue_density + haze_density;
...@@ -102,7 +104,7 @@ void main() ...@@ -102,7 +104,7 @@ void main()
sunlight *= exp( - light_atten * temp2.y); sunlight *= exp( - light_atten * temp2.y);
// Distance // Distance
temp2.z = Plen * density_multiplier; temp2.z = Plen * dens_mul;
// Transparency (-> temp1) // Transparency (-> temp1)
// ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati // ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati
......
...@@ -37,8 +37,6 @@ uniform vec4 blue_density; ...@@ -37,8 +37,6 @@ uniform vec4 blue_density;
uniform float haze_horizon; uniform float haze_horizon;
uniform float haze_density; uniform float haze_density;
uniform float cloud_shadow; uniform float cloud_shadow;
uniform float density_multiplier;
uniform float distance_multiplier;
uniform float max_y; uniform float max_y;
uniform vec4 glow; uniform vec4 glow;
uniform float scene_light_strength; uniform float scene_light_strength;
...@@ -58,85 +56,3 @@ vec3 atmosLighting(vec3 light) ...@@ -58,85 +56,3 @@ vec3 atmosLighting(vec3 light)
return atmosFragLighting(light, getAdditiveColor(), getAtmosAttenuation()); return atmosFragLighting(light, getAdditiveColor(), getAtmosAttenuation());
} }
void calcFragAtmospherics(vec3 inPositionEye, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive, out vec3 atten) {
vec3 P = inPositionEye;
vec3 tmpLightnorm = lightnorm.xyz;
vec3 Pn = normalize(P);
float Plen = length(P);
vec4 temp1 = vec4(0);
vec3 temp2 = vec3(0);
vec4 blue_weight;
vec4 haze_weight;
vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color;
vec4 light_atten;
//sunlight attenuation effect (hue and brightness) due to atmosphere
//this is used later for sunlight modulation at various altitudes
light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y);
//I had thought blue_density and haze_density should have equal weighting,
//but attenuation due to haze_density tends to seem too strong
temp1 = blue_density + vec4(haze_density);
blue_weight = blue_density / temp1;
haze_weight = vec4(haze_density) / temp1;
//(TERRAIN) compute sunlight from lightnorm only (for short rays like terrain)
temp2.y = max(0.0, tmpLightnorm.y);
temp2.y = 1. / temp2.y;
sunlight *= exp( - light_atten * temp2.y);
// main atmospheric scattering line integral
temp2.z = Plen * density_multiplier;
// Transparency (-> temp1)
// ATI Bugfix -- can't store temp1*temp2.z*distance_multiplier in a variable because the ati
// compiler gets confused.
temp1 = exp(-temp1 * temp2.z * distance_multiplier);
//final atmosphere attenuation factor
atten = temp1.rgb;
//compute haze glow
//(can use temp2.x as temp because we haven't used it yet)
temp2.x = dot(Pn, tmpLightnorm.xyz);
temp2.x = 1. - temp2.x;
//temp2.x is 0 at the sun and increases away from sun
temp2.x = max(temp2.x, .03); //was glow.y
//set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
temp2.x *= glow.x;
//higher glow.x gives dimmer glow (because next step is 1 / "angle")
temp2.x = pow(temp2.x, glow.z);
//glow.z should be negative, so we're doing a sort of (1 / "angle") function
//add "minimum anti-solar illumination"
temp2.x += .25;
//increase ambient when there are more clouds
vec4 tmpAmbient = ambient + (vec4(1.) - ambient) * cloud_shadow * 0.5;
/* decrease value and saturation (that in HSV, not HSL) for occluded areas
* // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html
* // The following line of code performs the equivalent of:
* float ambAlpha = tmpAmbient.a;
* float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis
* vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue);
* tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat, ambAlpha);
*/
tmpAmbient = vec4(mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor), tmpAmbient.a);
//haze color
additive =
vec3(blue_horizon * blue_weight * (sunlight*(1.-cloud_shadow) + tmpAmbient)
+ (haze_horizon * haze_weight) * (sunlight*(1.-cloud_shadow) * temp2.x
+ tmpAmbient));
//brightness of surface both sunlight and ambient
sunlit = vec3(sunlight * .5);
amblit = vec3(tmpAmbient * .25);
additive *= vec3(1.0 - temp1);
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment