Newer
Older
/**
* @file llsingleton.cpp
* @author Brad Kittenbrink
*
* $LicenseInfo:firstyear=2009&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llsingleton.h"
#include "llerror.h"
#include "llerrorcontrol.h" // LLError::is_available()
#include "lldependencies.h"
#include <boost/foreach.hpp>
#include <algorithm>
#include <iostream> // std::cerr in dire emergency
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include <sstream>
#include <stdexcept>
// Our master list of all LLSingletons is itself an LLSingleton. We used to
// store it in a function-local static, but that could get destroyed before
// the last of the LLSingletons -- and ~LLSingletonBase() definitely wants to
// remove itself from the master list. Since the whole point of this master
// list is to help track inter-LLSingleton dependencies, and since we have
// this implicit dependency from every LLSingleton to the master list, make it
// an LLSingleton.
class LLSingletonBase::MasterList:
public LLSingleton<LLSingletonBase::MasterList>
{
private:
friend class LLSingleton<LLSingletonBase::MasterList>;
public:
// No need to make this private with accessors; nobody outside this source
// file can see it.
LLSingletonBase::list_t mList;
};
//static
LLSingletonBase::list_t& LLSingletonBase::get_master()
{
return LLSingletonBase::MasterList::instance().mList;
}
void LLSingletonBase::add_master()
{
// As each new LLSingleton is constructed, add to the master list.
get_master().push_back(this);
}
void LLSingletonBase::remove_master()
{
// When an LLSingleton is destroyed, remove from master list.
// add_master() used to capture the iterator to the newly-added list item
// so we could directly erase() it from the master list. Unfortunately
// that runs afoul of destruction-dependency order problems. So search the
// master list, and remove this item IF FOUND. We have few enough
// LLSingletons, and they are so rarely destroyed (once per run), that the
// cost of a linear search should not be an issue.
get_master().remove(this);
}
// Wrapping our initializing list in a static method ensures that it will be
// constructed on demand. This list doesn't also need to be in an LLSingleton
// because (a) it should be empty by program shutdown and (b) none of our
// destructors reference it.
//static
LLSingletonBase::list_t& LLSingletonBase::get_initializing()
{
static list_t sList;
return sList;
}
LLSingletonBase::LLSingletonBase():
mCleaned(false),
mDeleteSingleton(NULL)
{
// Make this the currently-initializing LLSingleton.
push_initializing();
}
LLSingletonBase::~LLSingletonBase() {}
void LLSingletonBase::push_initializing()
{
get_initializing().push_back(this);
}
void LLSingletonBase::pop_initializing()
{
list_t& list(get_initializing());
if (list.empty())
{
logerrs("Underflow in stack of currently-initializing LLSingletons at ",
typeid(*this).name(), "::getInstance()");
}
if (list.back() != this)
{
logerrs("Push/pop mismatch in stack of currently-initializing LLSingletons: ",
typeid(*this).name(), "::getInstance() trying to pop ",
typeid(*list.back()).name());
}
// Here we're sure that list.back() == this. Whew, pop it.
list.pop_back();
}
void LLSingletonBase::capture_dependency(EInitState initState)
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
{
// Did this getInstance() call come from another LLSingleton, or from
// vanilla application code? Note that although this is a nontrivial
// method, the vast majority of its calls arrive here with initializing
// empty().
list_t& initializing(get_initializing());
if (! initializing.empty())
{
// getInstance() is being called by some other LLSingleton. But -- is
// this a circularity? That is, does 'this' already appear in the
// initializing stack?
// For what it's worth, normally 'initializing' should contain very
// few elements.
list_t::const_iterator found =
std::find(initializing.begin(), initializing.end(), this);
if (found != initializing.end())
{
// Report the circularity. Requiring the coder to dig through the
// logic to diagnose exactly how we got here is less than helpful.
std::ostringstream out;
for ( ; found != initializing.end(); ++found)
{
// 'found' is an iterator; *found is an LLSingletonBase*; **found
// is the actual LLSingletonBase instance.
out << typeid(**found).name() << " -> ";
}
// We promise to capture dependencies from both the constructor
// and the initSingleton() method, so an LLSingleton's instance
// pointer is on the initializing list during both. Now that we've
// detected circularity, though, we must distinguish the two. If
// the recursive call is from the constructor, we CAN'T honor it:
// otherwise we'd be returning a pointer to a partially-
// constructed object! But from initSingleton() is okay: that
// method exists specifically to support circularity.
// Decide which log helper to call based on initState. They have
// identical signatures.
((initState == CONSTRUCTING)? logerrs : logwarns)
("LLSingleton circularity: ", out.str().c_str(), typeid(*this).name(), "");
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
}
else
{
// Here 'this' is NOT already in the 'initializing' stack. Great!
// Record the dependency.
// initializing.back() is the LLSingletonBase* currently being
// initialized. Store 'this' in its mDepends set.
initializing.back()->mDepends.insert(this);
}
}
}
//static
LLSingletonBase::vec_t LLSingletonBase::dep_sort()
{
// While it would theoretically be possible to maintain a static
// SingletonDeps through the life of the program, dynamically adding and
// removing LLSingletons as they are created and destroyed, in practice
// it's less messy to construct it on demand. The overhead of doing so
// should happen basically twice: once for cleanupAll(), once for
// deleteAll().
typedef LLDependencies<LLSingletonBase*> SingletonDeps;
SingletonDeps sdeps;
list_t& master(get_master());
BOOST_FOREACH(LLSingletonBase* sp, master)
{
// Build the SingletonDeps structure by adding, for each
// LLSingletonBase* sp in the master list, sp itself. It has no
// associated value type in our SingletonDeps, hence the 0. We don't
// record the LLSingletons it must follow; rather, we record the ones
// it must precede. Copy its mDepends to a KeyList to express that.
sdeps.add(sp, 0,
SingletonDeps::KeyList(),
SingletonDeps::KeyList(sp->mDepends.begin(), sp->mDepends.end()));
}
vec_t ret;
ret.reserve(master.size());
// We should be able to effect this with a transform_iterator that
// extracts just the first (key) element from each sorted_iterator, then
// uses vec_t's range constructor... but frankly this is more
// straightforward, as long as we remember the above reserve() call!
BOOST_FOREACH(SingletonDeps::sorted_iterator::value_type pair, sdeps.sort())
{
ret.push_back(pair.first);
}
// The master list is not itself pushed onto the master list. Add it as
// the very last entry -- it is the LLSingleton on which ALL others
// depend! -- so our caller will process it.
ret.push_back(MasterList::getInstance());
return ret;
}
//static
void LLSingletonBase::cleanupAll()
{
// It's essential to traverse these in dependency order.
BOOST_FOREACH(LLSingletonBase* sp, dep_sort())
{
// Call cleanupSingleton() only if we haven't already done so for this
// instance.
if (! sp->mCleaned)
{
sp->mCleaned = true;
try
{
sp->cleanupSingleton();
}
catch (const std::exception& e)
{
logwarns("Exception in ", typeid(*sp).name(),
"::cleanupSingleton(): ", e.what());
}
catch (...)
{
logwarns("Unknown exception in ", typeid(*sp).name(),
"::cleanupSingleton()");
}
}
}
}
//static
void LLSingletonBase::deleteAll()
{
// It's essential to traverse these in dependency order.
BOOST_FOREACH(LLSingletonBase* sp, dep_sort())
{
// Capture the class name first: in case of exception, don't count on
// being able to extract it later.
const char* name = typeid(*sp).name();
try
{
// Call static method through instance function pointer.
if (! sp->mDeleteSingleton)
{
// This Should Not Happen... but carry on.
logwarns(name, "::mDeleteSingleton not initialized!");
}
else
{
// properly initialized: call it.
// From this point on, DO NOT DEREFERENCE sp!
sp->mDeleteSingleton();
}
}
catch (const std::exception& e)
{
logwarns("Exception in ", name, "::deleteSingleton(): ", e.what());
}
catch (...)
{
logwarns("Unknown exception in ", name, "::deleteSingleton()");
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
}
}
}
/*------------------------ Final cleanup management ------------------------*/
class LLSingletonBase::MasterRefcount
{
public:
// store a POD int so it will be statically initialized to 0
int refcount;
};
static LLSingletonBase::MasterRefcount sMasterRefcount;
LLSingletonBase::ref_ptr_t LLSingletonBase::get_master_refcount()
{
// Calling this method constructs a new ref_ptr_t, which implicitly calls
// intrusive_ptr_add_ref(MasterRefcount*).
return &sMasterRefcount;
}
void intrusive_ptr_add_ref(LLSingletonBase::MasterRefcount* mrc)
{
// Count outstanding SingletonLifetimeManager instances.
++mrc->refcount;
}
void intrusive_ptr_release(LLSingletonBase::MasterRefcount* mrc)
{
// Notice when each SingletonLifetimeManager instance is destroyed.
if (! --mrc->refcount)
{
// The last instance was destroyed. Time to kill any remaining
// LLSingletons -- but in dependency order.
LLSingletonBase::deleteAll();
}
}
/*---------------------------- Logging helpers -----------------------------*/
//static
void LLSingletonBase::logerrs(const char* p1, const char* p2, const char* p3, const char* p4)
// Check LLError::is_available() because some of LLError's infrastructure
// is itself an LLSingleton. If that LLSingleton has not yet been
// initialized, trying to log will engage LLSingleton machinery... and
// around and around we go.
if (LLError::is_available())
{
LL_ERRS() << p1 << p2 << p3 << p4 << LL_ENDL;
}
else
{
// Caller may be a test program, or something else whose stderr is
// visible to the user.
std::cerr << p1 << p2 << p3 << p4 << std::endl;
// The other important side effect of LL_ERRS() is
// https://www.youtube.com/watch?v=OMG7paGJqhQ (emphasis on OMG)
LLError::crashAndLoop(std::string());
}
void LLSingletonBase::logwarns(const char* p1, const char* p2, const char* p3, const char* p4)
// See logerrs() remarks about is_available().
if (LLError::is_available())
{
LL_WARNS() << p1 << p2 << p3 << p4 << LL_ENDL;
}
else
{
std::cerr << p1 << p2 << p3 << p4 << std::endl;
}