Code owners
Assign users and groups as approvers for specific file changes. Learn more.
patch_code.cpp 8.26 KiB
/**
* @file patch_code.cpp
* @brief Encode patch DCT data into bitcode.
*
* $LicenseInfo:firstyear=2000&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llmath.h"
//#include "vmath.h"
#include "v3math.h"
#include "patch_dct.h"
#include "patch_code.h"
#include "llbitpack.h"
U32 gPatchSize, gWordBits;
void init_patch_coding(LLBitPack &bitpack)
{
bitpack.resetBitPacking();
}
void code_patch_group_header(LLBitPack &bitpack, LLGroupHeader *gopp)
{
#ifdef LL_BIG_ENDIAN
U8 *stride = (U8 *)&gopp->stride;
bitpack.bitPack(&(stride[1]), 8);
bitpack.bitPack(&(stride[0]), 8);
#else
bitpack.bitPack((U8 *)&gopp->stride, 16);
#endif
bitpack.bitPack((U8 *)&gopp->patch_size, 8);
bitpack.bitPack((U8 *)&gopp->layer_type, 8);
gPatchSize = gopp->patch_size;
}
void code_patch_header(LLBitPack &bitpack, LLPatchHeader *ph, S32 *patch)
{
S32 i, j, temp, patch_size = gPatchSize, wbits = (ph->quant_wbits & 0xf) + 2;
U32 max_wbits = wbits + 5, min_wbits = wbits>>1;
wbits = min_wbits;
for (i = 0; i < (int) patch_size*patch_size; i++)
{
temp = patch[i];
if (temp)
{
if (temp < 0)
temp *= -1;
for (j = max_wbits; j > (int) min_wbits; j--)
{
if (temp & (1<<j))
{
if (j > wbits)
wbits = j;
break;
}
}
}
}
wbits += 1;
ph->quant_wbits &= 0xf0;
if ( (wbits > 17)
||(wbits < 2))
{
LL_ERRS() << "Bits needed per word in code_patch_header out of legal range. Adjust compression quatization." << LL_ENDL;
}
ph->quant_wbits |= (wbits - 2);
bitpack.bitPack((U8 *)&ph->quant_wbits, 8);
#ifdef LL_BIG_ENDIAN
U8 *offset = (U8 *)&ph->dc_offset;
bitpack.bitPack(&(offset[3]), 8);
bitpack.bitPack(&(offset[2]), 8);
bitpack.bitPack(&(offset[1]), 8);
bitpack.bitPack(&(offset[0]), 8);
#else
bitpack.bitPack((U8 *)&ph->dc_offset, 32);
#endif
#ifdef LL_BIG_ENDIAN
U8 *range = (U8 *)&ph->range;
bitpack.bitPack(&(range[1]), 8);
bitpack.bitPack(&(range[0]), 8);
#else
bitpack.bitPack((U8 *)&ph->range, 16);
#endif
#ifdef LL_BIG_ENDIAN
U8 *ids = (U8 *)&ph->patchids;
bitpack.bitPack(&(ids[1]), 8);
bitpack.bitPack(&(ids[0]), 2);
#else
bitpack.bitPack((U8 *)&ph->patchids, 10);
#endif
gWordBits = wbits;
}
void code_end_of_data(LLBitPack &bitpack)
{
bitpack.bitPack((U8 *)&END_OF_PATCHES, 8);
}
void code_patch(LLBitPack &bitpack, S32 *patch, S32 postquant)
{
S32 i, j, patch_size = gPatchSize, wbits = gWordBits;
S32 temp;
BOOL b_eob;
if ( (postquant > patch_size*patch_size)
||(postquant < 0))
{
LL_ERRS() << "Bad postquant in code_patch!" << LL_ENDL;
}
if (postquant)
patch[patch_size*patch_size - postquant] = 0;
for (i = 0; i < patch_size*patch_size; i++)
{
b_eob = FALSE;
temp = patch[i];
if (!temp)
{
b_eob = TRUE;
for (j = i; j < patch_size*patch_size - postquant; j++)
{
if (patch[j])
{
b_eob = FALSE;
break;
}
}
if (b_eob)
{
bitpack.bitPack((U8 *)&ZERO_EOB, 2);
return;
}
else
{
bitpack.bitPack((U8 *)&ZERO_CODE, 1);
}
}
else
{
if (temp < 0)
{
temp *= -1;
if (temp > (1<<wbits))
{
temp = (1<<wbits);
// printf("patch quatization exceeding allowable bits!");
}
bitpack.bitPack((U8 *)&NEGATIVE_VALUE, 3);
bitpack.bitPack((U8 *)&temp, wbits);
}
else
{
if (temp > (1<<wbits))
{
temp = (1<<wbits);
// printf("patch quatization exceeding allowable bits!");
}
bitpack.bitPack((U8 *)&POSITIVE_VALUE, 3);
bitpack.bitPack((U8 *)&temp, wbits);
}
}
}
}
void end_patch_coding(LLBitPack &bitpack)
{
bitpack.flushBitPack();
}
void init_patch_decoding(LLBitPack &bitpack)
{
bitpack.resetBitPacking();
}
void decode_patch_group_header(LLBitPack &bitpack, LLGroupHeader *gopp)
{
U16 retvalu16;
retvalu16 = 0;
#ifdef LL_BIG_ENDIAN
U8 *ret = (U8 *)&retvalu16;
bitpack.bitUnpack(&(ret[1]), 8);
bitpack.bitUnpack(&(ret[0]), 8);
#else
bitpack.bitUnpack((U8 *)&retvalu16, 16);
#endif
gopp->stride = retvalu16;
U8 retvalu8 = 0;
bitpack.bitUnpack(&retvalu8, 8);
gopp->patch_size = retvalu8;
retvalu8 = 0;
bitpack.bitUnpack(&retvalu8, 8);
gopp->layer_type = retvalu8;
gPatchSize = gopp->patch_size;
}
void decode_patch_header(LLBitPack &bitpack, LLPatchHeader *ph)
{
U8 retvalu8;
retvalu8 = 0;
bitpack.bitUnpack(&retvalu8, 8);
ph->quant_wbits = retvalu8;
if (END_OF_PATCHES == ph->quant_wbits)
{
// End of data, blitz the rest.
ph->dc_offset = 0;
ph->range = 0;
ph->patchids = 0;
return;
}
U32 retvalu32 = 0;
#ifdef LL_BIG_ENDIAN
U8 *ret = (U8 *)&retvalu32;
bitpack.bitUnpack(&(ret[3]), 8);
bitpack.bitUnpack(&(ret[2]), 8);
bitpack.bitUnpack(&(ret[1]), 8);
bitpack.bitUnpack(&(ret[0]), 8);
#else
bitpack.bitUnpack((U8 *)&retvalu32, 32);
#endif
ph->dc_offset = *(F32 *)&retvalu32;
U16 retvalu16 = 0;
#ifdef LL_BIG_ENDIAN
ret = (U8 *)&retvalu16;
bitpack.bitUnpack(&(ret[1]), 8);
bitpack.bitUnpack(&(ret[0]), 8);
#else
bitpack.bitUnpack((U8 *)&retvalu16, 16);
#endif
ph->range = retvalu16;
retvalu16 = 0;
#ifdef LL_BIG_ENDIAN
ret = (U8 *)&retvalu16;
bitpack.bitUnpack(&(ret[1]), 8);
bitpack.bitUnpack(&(ret[0]), 2);
#else
bitpack.bitUnpack((U8 *)&retvalu16, 10);
#endif
ph->patchids = retvalu16;
gWordBits = (ph->quant_wbits & 0xf) + 2;
}
void decode_patch(LLBitPack &bitpack, S32 *patches)
{
#ifdef LL_BIG_ENDIAN
S32 i, j, patch_size = gPatchSize, wbits = gWordBits;
U8 tempu8;
U16 tempu16;
U32 tempu32;
for (i = 0; i < patch_size*patch_size; i++)
{
bitpack.bitUnpack((U8 *)&tempu8, 1);
if (tempu8)
{
// either 0 EOB or Value
bitpack.bitUnpack((U8 *)&tempu8, 1);
if (tempu8)
{
// value
bitpack.bitUnpack((U8 *)&tempu8, 1);
if (tempu8)
{
// negative
patches[i] = -1;
}
else
{
// positive
patches[i] = 1;
}
if (wbits <= 8)
{
bitpack.bitUnpack((U8 *)&tempu8, wbits);
patches[i] *= tempu8;
}
else if (wbits <= 16)
{
tempu16 = 0;
U8 *ret = (U8 *)&tempu16;
bitpack.bitUnpack(&(ret[1]), 8);
bitpack.bitUnpack(&(ret[0]), wbits - 8);
patches[i] *= tempu16;
}
else if (wbits <= 24)
{
tempu32 = 0;
U8 *ret = (U8 *)&tempu32;
bitpack.bitUnpack(&(ret[2]), 8);
bitpack.bitUnpack(&(ret[1]), 8);
bitpack.bitUnpack(&(ret[0]), wbits - 16);
patches[i] *= tempu32;
}
else if (wbits <= 32)
{
tempu32 = 0;
U8 *ret = (U8 *)&tempu32;
bitpack.bitUnpack(&(ret[3]), 8);
bitpack.bitUnpack(&(ret[2]), 8);
bitpack.bitUnpack(&(ret[1]), 8);
bitpack.bitUnpack(&(ret[0]), wbits - 24);
patches[i] *= tempu32;
}
}
else
{
for (j = i; j < patch_size*patch_size; j++)
{
patches[j] = 0;
}
return;
}
}
else
{
patches[i] = 0;
}
}
#else
S32 i, j, patch_size = gPatchSize, wbits = gWordBits;
U32 temp;
for (i = 0; i < patch_size*patch_size; i++)
{
temp = 0;
bitpack.bitUnpack((U8 *)&temp, 1);
if (temp)
{
// either 0 EOB or Value
temp = 0;
bitpack.bitUnpack((U8 *)&temp, 1);
if (temp)
{
// value
temp = 0;
bitpack.bitUnpack((U8 *)&temp, 1);
if (temp)
{
// negative
temp = 0;
bitpack.bitUnpack((U8 *)&temp, wbits);
patches[i] = temp;
patches[i] *= -1;
}
else
{
// positive
temp = 0;
bitpack.bitUnpack((U8 *)&temp, wbits);
patches[i] = temp;
}
}
else
{
for (j = i; j < patch_size*patch_size; j++)
{
patches[j] = 0;
}
return;
}
}
else
{
patches[i] = 0;
}
}
#endif
}