Newer
Older
/**
* @file llsingleton.cpp
* @author Brad Kittenbrink
*
* $LicenseInfo:firstyear=2009&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llsingleton.h"
#include "llerror.h"
#include "llerrorcontrol.h" // LLError::is_available()
#include "lldependencies.h"
#include "llexception.h"
#include "llcoros.h"
#include <boost/foreach.hpp>
#include <algorithm>
#include <iostream> // std::cerr in dire emergency
#include <sstream>
#include <stdexcept>
namespace {
void log(LLError::ELevel level,
const char* p1, const char* p2, const char* p3, const char* p4);
void logdebugs(const char* p1="", const char* p2="", const char* p3="", const char* p4="");
bool oktolog();
} // anonymous namespace
// Our master list of all LLSingletons is itself an LLSingleton. We used to
// store it in a function-local static, but that could get destroyed before
// the last of the LLSingletons -- and ~LLSingletonBase() definitely wants to
// remove itself from the master list. Since the whole point of this master
// list is to help track inter-LLSingleton dependencies, and since we have
// this implicit dependency from every LLSingleton to the master list, make it
// an LLSingleton.
class LLSingletonBase::MasterList:
public LLSingleton<LLSingletonBase::MasterList>
{
LLSINGLETON_EMPTY_CTOR(MasterList);
// Independently of the LLSingleton locks governing construction,
// destruction and other state changes of the MasterList instance itself,
// we must also defend each of the data structures owned by the
// MasterList.
// This must be a recursive_mutex because, while the lock is held for
// manipulating some data in the master list, we must also check whether
// it's safe to log -- which involves querying a different LLSingleton --
// which requires accessing the master list.
typedef std::recursive_mutex mutex_t;
typedef std::unique_lock<mutex_t> lock_t;
mutex_t mMutex;
public:
// Instantiate this to both obtain a reference to MasterList::instance()
// and lock its mutex for the lifespan of this Lock instance.
class Lock
{
public:
Lock():
mMasterList(MasterList::instance()),
mLock(mMasterList.mMutex)
{}
Lock(const Lock&) = delete;
Lock& operator=(const Lock&) = delete;
MasterList& get() const { return mMasterList; }
operator MasterList&() const { return get(); }
protected:
MasterList& mMasterList;
MasterList::lock_t mLock;
};
private:
// This is the master list of all instantiated LLSingletons (save the
// MasterList itself) in arbitrary order. You MUST call dep_sort() before
// traversing this list.
list_t mMaster;
public:
// Instantiate this to obtain a reference to MasterList::mMaster and to
// hold the MasterList lock for the lifespan of this LockedMaster
// instance.
struct LockedMaster: public Lock
{
list_t& get() const { return mMasterList.mMaster; }
operator list_t&() const { return get(); }
};
// We need to maintain a stack of LLSingletons currently being
// initialized, either in the constructor or in initSingleton(). However,
// managing that as a stack depends on having a DISTINCT 'initializing'
// stack for every C++ stack in the process! And we have a distinct C++
// stack for every running coroutine. Therefore this stack must be based
// on a coroutine-local pointer.
// This local_ptr isn't static because it's a member of an LLSingleton.
LLCoros::local_ptr<LLSingletonBase::list_t> mInitializing;
public:
// Instantiate this to obtain a reference to the coroutine-specific
// initializing list and to hold the MasterList lock for the lifespan of
// this LockedInitializing instance.
struct LockedInitializing: public Lock
{
public:
LockedInitializing():
// only do the lookup once, cache the result
// note that the lock is already locked during this lookup
mList(&mMasterList.get_initializing_())
{}
list_t& get() const
{
if (! mList)
{
LLTHROW(LLException("Trying to use LockedInitializing "
"after cleanup_initializing()"));
}
return *mList;
}
operator list_t&() const { return get(); }
void log(const char* verb, const char* name);
void cleanup_initializing()
{
mMasterList.cleanup_initializing_();
mList = nullptr;
}
private:
// Store pointer since cleanup_initializing() must clear it.
list_t* mList;
};
private:
list_t& get_initializing_()
{
LLSingletonBase::list_t* current = mInitializing.get();
if (! current)
{
// If the running coroutine doesn't already have an initializing
// stack, allocate a new one and save it for future reference.
current = new LLSingletonBase::list_t();
mInitializing.reset(current);
}
return *current;
// By the time mInitializing is destroyed, its value for every coroutine
// except the running one must have been reset() to nullptr. So every time
// we pop the list to empty, reset() the running coroutine's local_ptr.
void cleanup_initializing_()
{
mInitializing.reset(nullptr);
};
void LLSingletonBase::add_master()
{
// As each new LLSingleton is constructed, add to the master list.
// This temporary LockedMaster should suffice to hold the MasterList lock
// during the push_back() call.
MasterList::LockedMaster().get().push_back(this);
}
void LLSingletonBase::remove_master()
{
// When an LLSingleton is destroyed, remove from master list.
// add_master() used to capture the iterator to the newly-added list item
// so we could directly erase() it from the master list. Unfortunately
// that runs afoul of destruction-dependency order problems. So search the
// master list, and remove this item IF FOUND. We have few enough
// LLSingletons, and they are so rarely destroyed (once per run), that the
// cost of a linear search should not be an issue.
// This temporary LockedMaster should suffice to hold the MasterList lock
// during the remove() call.
MasterList::LockedMaster().get().remove(this);
}
//static
LLSingletonBase::list_t::size_type LLSingletonBase::get_initializing_size()
return MasterList::LockedInitializing().get().size();
}
LLSingletonBase::~LLSingletonBase() {}
void LLSingletonBase::push_initializing(const char* name)
MasterList::LockedInitializing locked_list;
// log BEFORE pushing so logging singletons don't cry circularity
locked_list.log("Pushing", name);
locked_list.get().push_back(this);
}
void LLSingletonBase::pop_initializing()
{
// Lock the MasterList for the duration of this call
MasterList::LockedInitializing locked_list;
list_t& list(locked_list.get());
if (list.empty())
{
logerrs("Underflow in stack of currently-initializing LLSingletons at ",
classname(this).c_str(), "::getInstance()");
// Now we know list.back() exists: capture it
LLSingletonBase* back(list.back());
// and pop it
list.pop_back();
// The viewer launches an open-ended number of coroutines. While we don't
// expect most of them to initialize LLSingleton instances, our present
// get_initializing() logic could lead to an open-ended number of map
// entries. So every time we pop the stack back to empty, delete the entry
// entirely.
if (list.empty())
{
locked_list.cleanup_initializing();
}
// Now validate the newly-popped LLSingleton.
if (back != this)
logerrs("Push/pop mismatch in stack of currently-initializing LLSingletons: ",
classname(this).c_str(), "::getInstance() trying to pop ",
classname(back).c_str());
// log AFTER popping so logging singletons don't cry circularity
locked_list.log("Popping", typeid(*back).name());
void LLSingletonBase::reset_initializing(list_t::size_type size)
{
// called for cleanup in case the LLSingleton subclass constructor throws
// an exception
// The tricky thing about this, the reason we have a separate method
// instead of just calling pop_initializing(), is (hopefully remote)
// possibility that the exception happened *before* the
// push_initializing() call in LLSingletonBase's constructor. So only
// remove the stack top if in fact we've pushed something more than the
// previous size.
MasterList::LockedInitializing locked_list;
list_t& list(locked_list.get());
while (list.size() > size)
{
list.pop_back();
}
// as in pop_initializing()
if (list.empty())
{
locked_list.cleanup_initializing();
}
}
void LLSingletonBase::MasterList::LockedInitializing::log(const char* verb, const char* name)
{
if (oktolog())
{
LL_DEBUGS("LLSingleton") << verb << ' ' << demangle(name) << ';';
for (list_t::const_reverse_iterator ri(mList->rbegin()), rend(mList->rend());
ri != rend; ++ri)
{
LLSingletonBase* sb(*ri);
LL_CONT << ' ' << classname(sb);
}
}
LL_ENDL;
}
void LLSingletonBase::capture_dependency()
MasterList::LockedInitializing locked_list;
list_t& initializing(locked_list.get());
// Did this getInstance() call come from another LLSingleton, or from
// vanilla application code? Note that although this is a nontrivial
// method, the vast majority of its calls arrive here with initializing
// empty().
if (! initializing.empty())
{
// getInstance() is being called by some other LLSingleton. But -- is
// this a circularity? That is, does 'this' already appear in the
// initializing stack?
// For what it's worth, normally 'initializing' should contain very
// few elements.
list_t::const_iterator found =
std::find(initializing.begin(), initializing.end(), this);
if (found != initializing.end())
{
list_t::const_iterator it_next = found;
it_next++;
// Report the circularity. Requiring the coder to dig through the
// logic to diagnose exactly how we got here is less than helpful.
std::ostringstream out;
for ( ; found != initializing.end(); ++found)
{
// 'found' is an iterator; *found is an LLSingletonBase*; **found
// is the actual LLSingletonBase instance.
LLSingletonBase* foundp(*found);
out << classname(foundp) << " -> ";
// Decide which log helper to call.
if (it_next == initializing.end())
{
// Points to self after construction, but during initialization.
// Singletons can initialize other classes that depend onto them,
// so this is expected.
//
// Example: LLNotifications singleton initializes default channels.
// Channels register themselves with singleton once done.
logdebugs("LLSingleton circularity: ", out.str().c_str(),
classname(this).c_str(), "");
}
else
{
// Actual circularity with other singleton (or single singleton is used extensively).
// Dependency can be unclear.
logwarns("LLSingleton circularity: ", out.str().c_str(),
classname(this).c_str(), "");
}
else
{
// Here 'this' is NOT already in the 'initializing' stack. Great!
// Record the dependency.
// initializing.back() is the LLSingletonBase* currently being
// initialized. Store 'this' in its mDepends set.
LLSingletonBase* current(initializing.back());
if (current->mDepends.insert(this).second)
{
// only log the FIRST time we hit this dependency!
logdebugs(classname(current).c_str(),
" depends on ", classname(this).c_str());
}
}
}
//static
LLSingletonBase::vec_t LLSingletonBase::dep_sort()
{
// While it would theoretically be possible to maintain a static
// SingletonDeps through the life of the program, dynamically adding and
// removing LLSingletons as they are created and destroyed, in practice
// it's less messy to construct it on demand. The overhead of doing so
// should happen basically once: for deleteAll().
typedef LLDependencies<LLSingletonBase*> SingletonDeps;
SingletonDeps sdeps;
// Lock while traversing the master list
MasterList::LockedMaster master;
for (LLSingletonBase* sp : master.get())
{
// Build the SingletonDeps structure by adding, for each
// LLSingletonBase* sp in the master list, sp itself. It has no
// associated value type in our SingletonDeps, hence the 0. We don't
// record the LLSingletons it must follow; rather, we record the ones
// it must precede. Copy its mDepends to a KeyList to express that.
sdeps.add(sp, 0,
SingletonDeps::KeyList(),
SingletonDeps::KeyList(sp->mDepends.begin(), sp->mDepends.end()));
}
vec_t ret;
ret.reserve(master.get().size());
// We should be able to effect this with a transform_iterator that
// extracts just the first (key) element from each sorted_iterator, then
// uses vec_t's range constructor... but frankly this is more
// straightforward, as long as we remember the above reserve() call!
for (const SingletonDeps::sorted_iterator::value_type& pair : sdeps.sort())
{
ret.push_back(pair.first);
}
// The master list is not itself pushed onto the master list. Add it as
// the very last entry -- it is the LLSingleton on which ALL others
// depend! -- so our caller will process it.
ret.push_back(&master.Lock::get());
return ret;
}
void LLSingletonBase::cleanup_()
{
logdebugs("calling ", classname(this).c_str(), "::cleanupSingleton()");
try
{
cleanupSingleton();
}
catch (...)
{
LOG_UNHANDLED_EXCEPTION(classname(this) + "::cleanupSingleton()");
}
}
//static
void LLSingletonBase::deleteAll()
{
// It's essential to traverse these in dependency order.
BOOST_FOREACH(LLSingletonBase* sp, dep_sort())
{
// Capture the class name first: in case of exception, don't count on
// being able to extract it later.
const std::string name = classname(sp);
try
{
// Call static method through instance function pointer.
if (! sp->mDeleteSingleton)
{
// This Should Not Happen... but carry on.
logwarns(name.c_str(), "::mDeleteSingleton not initialized!");
}
else
{
// properly initialized: call it.
logdebugs("calling ", name.c_str(), "::deleteSingleton()");
// From this point on, DO NOT DEREFERENCE sp!
sp->mDeleteSingleton();
}
}
catch (const std::exception& e)
{
logwarns("Exception in ", name.c_str(), "::deleteSingleton(): ", e.what());
}
catch (...)
{
logwarns("Unknown exception in ", name.c_str(), "::deleteSingleton()");
}
}
}
/*---------------------------- Logging helpers -----------------------------*/
namespace {
bool oktolog()
{
// See comments in log() below.
return LLError::is_available();
void log(LLError::ELevel level,
const char* p1, const char* p2, const char* p3, const char* p4)
// The is_available() test below ensures that we'll stop logging once
// LLError has been cleaned up. If we had a similar portable test for
// std::cerr, this would be a good place to use it.
// Check LLError::is_available() because some of LLError's infrastructure
// is itself an LLSingleton. If that LLSingleton has not yet been
// initialized, trying to log will engage LLSingleton machinery... and
// around and around we go.
if (LLError::is_available())
{
LL_VLOGS(level, "LLSingleton") << p1 << p2 << p3 << p4 << LL_ENDL;
}
else
{
// Caller may be a test program, or something else whose stderr is
// visible to the user.
std::cerr << p1 << p2 << p3 << p4 << std::endl;
}
void logdebugs(const char* p1, const char* p2, const char* p3, const char* p4)
{
log(LLError::LEVEL_DEBUG, p1, p2, p3, p4);
}
} // anonymous namespace
void LLSingletonBase::logwarns(const char* p1, const char* p2, const char* p3, const char* p4)
log(LLError::LEVEL_WARN, p1, p2, p3, p4);
}
//static
void LLSingletonBase::loginfos(const char* p1, const char* p2, const char* p3, const char* p4)
{
log(LLError::LEVEL_INFO, p1, p2, p3, p4);
}
//static
void LLSingletonBase::logerrs(const char* p1, const char* p2, const char* p3, const char* p4)
{
log(LLError::LEVEL_ERROR, p1, p2, p3, p4);
// The other important side effect of LL_ERRS() is
// https://www.youtube.com/watch?v=OMG7paGJqhQ (emphasis on OMG)
std::ostringstream out;
out << p1 << p2 << p3 << p4;
auto crash = LLError::getFatalFunction();
if (crash)
{
crash(out.str());
}
else
{
LLError::crashAndLoop(out.str());
}
std::string LLSingletonBase::demangle(const char* mangled)
{
return LLError::Log::demangle(mangled);
}