Newer
Older
*
* $LicenseInfo:firstyear=2007&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2007, Linden Research, Inc.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
/* Parts of this file are taken from Sascha Willem's Vulkan GLTF refernce implementation
MIT License
Copyright (c) 2018 Sascha Willems
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
uniform sampler2D normalMap;
uniform sampler2D depthMap;
uniform sampler2D projectionMap; // rgba
// projected lighted params
uniform mat4 proj_mat; //screen space to light space projector
uniform vec3 proj_n; // projector normal
uniform vec3 proj_p; //plane projection is emitting from (in screen space)
uniform float proj_focus; // distance from plane to begin blurring
uniform float proj_lod ; // (number of mips in proj map)
uniform float proj_range; // range between near clip and far clip plane of projection
uniform float proj_ambiance;
uniform vec3 color; // light_color
uniform float size; // light_size
uniform mat4 inv_proj;
uniform vec2 screen_res;
const float MIN_PBR_ROUGHNESS = 0.045;
vec3 srgb_to_linear(vec3 cs);
Cosmic Linden
committed
vec3 atmosFragLightingLinear(vec3 light, vec3 additive, vec3 atten);
float calcLegacyDistanceAttenuation(float distance, float falloff)
{
float dist_atten = 1.0 - clamp((distance + falloff)/(1.0 + falloff), 0.0, 1.0);
dist_atten *= dist_atten;
// Tweak falloff slightly to match pre-EEP attenuation
// NOTE: this magic number also shows up in a great many other places, search for dist_atten *= to audit
dist_atten *= 2.0;
return dist_atten;
}
Ptolemy
committed
// In:
// lv unnormalized surface to light vector
// n normal of the surface
// pos unnormalized camera to surface vector
// Out:
// l normalized surace to light vector
// nl diffuse angle
// nh specular angle
void calcHalfVectors(vec3 lv, vec3 n, vec3 v,
out vec3 h, out vec3 l, out float nh, out float nl, out float nv, out float vh, out float lightDist)
Ptolemy
committed
l = normalize(lv);
h = normalize(l + v);
// lower bound to avoid divide by zero
float eps = 0.000001;
nh = clamp(dot(n, h), eps, 1.0);
nl = clamp(dot(n, l), eps, 1.0);
nv = clamp(dot(n, v), eps, 1.0);
vh = clamp(dot(v, h), eps, 1.0);
Ptolemy
committed
lightDist = length(lv);
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// In:
// light_center
// pos
// Out:
// dist
// l_dist
// lv
// proj_tc Projector Textue Coordinates
bool clipProjectedLightVars(vec3 light_center, vec3 pos, out float dist, out float l_dist, out vec3 lv, out vec4 proj_tc )
{
lv = light_center - pos.xyz;
dist = length(lv);
bool clipped = (dist >= size);
if ( !clipped )
{
dist /= size;
l_dist = -dot(lv, proj_n);
vec4 projected_point = (proj_mat * vec4(pos.xyz, 1.0));
clipped = (projected_point.z < 0.0);
projected_point.xyz /= projected_point.w;
proj_tc = projected_point;
}
return clipped;
}
vec2 getScreenCoordinate(vec2 screenpos)
{
vec4 norm = texture(normalMap, screenpos.xy);
norm.xyz = normalize(norm.xyz);
return norm;
// get linear depth value given a depth buffer sample d and znear and zfar values
float linearDepth(float d, float znear, float zfar)
{
d = d * 2.0 - 1.0;
return znear * 2.0 * zfar / (zfar + znear - d * (zfar - znear));
}
float linearDepth01(float d, float znear, float zfar)
{
return linearDepth(d, znear, zfar) / zfar;
}
float depth = texture(depthMap, pos_screen).r;
vec4 getTexture2DLodAmbient(vec2 tc, float lod)
{
vec4 ret = textureLod(projectionMap, tc, lod);
ret.rgb = srgb_to_linear(ret.rgb);
vec2 dist = tc-vec2(0.5);
float d = dot(dist,dist);
ret *= min(clamp((0.25-d)/0.25, 0.0, 1.0), 1.0);
return ret;
}
vec4 getTexture2DLodDiffuse(vec2 tc, float lod)
{
vec4 ret = textureLod(projectionMap, tc, lod);
ret.rgb = srgb_to_linear(ret.rgb);
vec2 dist = vec2(0.5) - abs(tc-vec2(0.5));
float det = min(lod/(proj_lod*0.5), 1.0);
float d = min(dist.x, dist.y);
float edge = 0.25*det;
ret *= clamp(d/edge, 0.0, 1.0);
return ret;
}
// lit This is set by the caller: if (nl > 0.0) { lit = attenuation * nl * noise; }
// color Projected spotlight color
vec3 getProjectedLightAmbiance(float amb_da, float attenuation, float lit, float nl, float noise, vec2 projected_uv)
{
vec4 amb_plcol = getTexture2DLodAmbient(projected_uv, proj_lod);
vec3 amb_rgb = amb_plcol.rgb * amb_plcol.a;
amb_da += proj_ambiance;
amb_da += (nl*nl*0.5+0.5) * proj_ambiance;
amb_da *= attenuation * noise;
amb_da = min(amb_da, 1.0-lit);
return (amb_da * color.rgb * amb_rgb);
}
// Returns projected light in Linear
// Uses global spotlight color:
// color
// NOTE: projected.a will be pre-multiplied with projected.rgb
vec3 getProjectedLightDiffuseColor(float light_distance, vec2 projected_uv)
{
float diff = clamp((light_distance - proj_focus)/proj_range, 0.0, 1.0);
float lod = diff * proj_lod;
vec4 plcol = getTexture2DLodDiffuse(projected_uv.xy, lod);
return color.rgb * plcol.rgb * plcol.a;
}
vec4 texture2DLodSpecular(vec2 tc, float lod)
{
vec4 ret = textureLod(projectionMap, tc, lod);
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
ret.rgb = srgb_to_linear(ret.rgb);
vec2 dist = vec2(0.5) - abs(tc-vec2(0.5));
float det = min(lod/(proj_lod*0.5), 1.0);
float d = min(dist.x, dist.y);
d *= min(1, d * (proj_lod - lod)); // BUG? extra factor compared to diffuse causes N repeats
float edge = 0.25*det;
ret *= clamp(d/edge, 0.0, 1.0);
return ret;
}
// See: clipProjectedLightVars()
vec3 getProjectedLightSpecularColor(vec3 pos, vec3 n )
{
vec3 slit = vec3(0);
vec3 ref = reflect(normalize(pos), n);
//project from point pos in direction ref to plane proj_p, proj_n
vec3 pdelta = proj_p-pos;
float l_dist = length(pdelta);
float ds = dot(ref, proj_n);
if (ds < 0.0)
{
vec3 pfinal = pos + ref * dot(pdelta, proj_n)/ds;
vec4 stc = (proj_mat * vec4(pfinal.xyz, 1.0));
if (stc.z > 0.0)
{
stc /= stc.w;
slit = getProjectedLightDiffuseColor( l_dist, stc.xy ); // NOTE: Using diffuse due to texture2DLodSpecular() has extra: d *= min(1, d * (proj_lod - lod));
}
}
return slit; // specular light
}
vec3 getProjectedLightSpecularColor(float light_distance, vec2 projected_uv)
{
float diff = clamp((light_distance - proj_focus)/proj_range, 0.0, 1.0);
float lod = diff * proj_lod;
vec4 plcol = getTexture2DLodDiffuse(projected_uv.xy, lod); // NOTE: Using diffuse due to texture2DLodSpecular() has extra: d *= min(1, d * (proj_lod - lod));
return color.rgb * plcol.rgb * plcol.a;
}
vec4 getPosition(vec2 pos_screen)
{
float depth = getDepth(pos_screen);
vec2 sc = getScreenCoordinate(pos_screen);
vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0);
vec4 pos = inv_proj * ndc;
pos /= pos.w;
pos.w = 1.0;
return pos;
David Parks
committed
// get position given a normalized device coordinate
vec3 getPositionWithNDC(vec3 ndc)
{
vec4 pos = inv_proj * vec4(ndc, 1.0);
return pos.xyz / pos.w;
}
vec4 getPositionWithDepth(vec2 pos_screen, float depth)
{
David Parks
committed
vec3 ndc = vec3(sc.x, sc.y, 2.0*depth-1.0);
return vec4(getPositionWithNDC(ndc), 1.0);
vec2 getScreenCoord(vec4 clip)
{
vec4 ndc = clip;
ndc.xyz /= clip.w;
vec2 screen = vec2( ndc.xy * 0.5 );
screen += 0.5;
return screen;
}
David Parks
committed
vec2 getScreenXY(vec4 clip)
{
vec4 ndc = clip;
ndc.xyz /= clip.w;
vec2 screen = vec2( ndc.xy * 0.5 );
screen += 0.5;
screen *= screen_res;
return screen;
}
{
if (x > 0.0) return vec3( 0, x, 0 );
if (x < 0.0) return vec3(-x, 0, 0 );
return vec3( 0, 0, 1 );
}
vec3 hue_to_rgb(float hue)
{
if (hue > 1.0) return vec3(0.5);
vec3 rgb = abs(hue * 6. - vec3(3, 2, 4)) * vec3(1, -1, -1) + vec3(-1, 2, 2);
return clamp(rgb, 0.0, 1.0);
}
vec2 BRDF(float NoV, float roughness)
{
return texture(brdfLut, vec2(NoV, roughness)).rg;
}
float computeSpecularAO(float NoV, float ao, float roughness)
{
return clamp(pow(NoV + ao, exp2(-16.0 * roughness - 1.0)) - 1.0 + ao, 0.0, 1.0);
}
David Parks
committed
// set colorDiffuse and colorSpec to the results of GLTF PBR style IBL
vec3 pbrIbl(vec3 diffuseColor,
vec3 specularColor,
David Parks
committed
vec3 radiance, // radiance map sample
vec3 irradiance, // irradiance map sample
float ao, // ambient occlusion factor
float nv, // normal dot view vector
float perceptualRough)
David Parks
committed
{
// retrieve a scale and bias to F0. See [1], Figure 3
vec2 brdf = BRDF(clamp(nv, 0, 1), 1.0-perceptualRough);
vec3 diffuseLight = irradiance;
vec3 specularLight = radiance;
vec3 diffuse = diffuseLight * diffuseColor;
vec3 specular = specularLight * (specularColor * brdf.x + brdf.y);
specular *= computeSpecularAO(nv, ao, perceptualRough * perceptualRough);
return (diffuse * ao) + specular;
// Encapsulate the various inputs used by the various functions in the shading equation
// We store values in this struct to simplify the integration of alternative implementations
// of the shading terms, outlined in the Readme.MD Appendix.
struct PBRInfo
{
float NdotL; // cos angle between normal and light direction
float NdotV; // cos angle between normal and view direction
float NdotH; // cos angle between normal and half vector
float LdotH; // cos angle between light direction and half vector
float VdotH; // cos angle between view direction and half vector
float perceptualRoughness; // roughness value, as authored by the model creator (input to shader)
float metalness; // metallic value at the surface
vec3 reflectance0; // full reflectance color (normal incidence angle)
vec3 reflectance90; // reflectance color at grazing angle
float alphaRoughness; // roughness mapped to a more linear change in the roughness (proposed by [2])
vec3 diffuseColor; // color contribution from diffuse lighting
vec3 specularColor; // color contribution from specular lighting
};
// Basic Lambertian diffuse
// Implementation from Lambert's Photometria https://archive.org/details/lambertsphotome00lambgoog
// See also [1], Equation 1
vec3 diffuse(PBRInfo pbrInputs)
{
}
// The following equation models the Fresnel reflectance term of the spec equation (aka F())
// Implementation of fresnel from [4], Equation 15
vec3 specularReflection(PBRInfo pbrInputs)
{
return pbrInputs.reflectance0 + (pbrInputs.reflectance90 - pbrInputs.reflectance0) * pow(clamp(1.0 - pbrInputs.VdotH, 0.0, 1.0), 5.0);
}
// This calculates the specular geometric attenuation (aka G()),
// where rougher material will reflect less light back to the viewer.
// This implementation is based on [1] Equation 4, and we adopt their modifications to
// alphaRoughness as input as originally proposed in [2].
float geometricOcclusion(PBRInfo pbrInputs)
{
float NdotL = pbrInputs.NdotL;
float NdotV = pbrInputs.NdotV;
float r = pbrInputs.alphaRoughness;
float attenuationL = 2.0 * NdotL / (NdotL + sqrt(r * r + (1.0 - r * r) * (NdotL * NdotL)));
float attenuationV = 2.0 * NdotV / (NdotV + sqrt(r * r + (1.0 - r * r) * (NdotV * NdotV)));
return attenuationL * attenuationV;
}
// The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D())
// Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz
// Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3.
float microfacetDistribution(PBRInfo pbrInputs)
{
float roughnessSq = pbrInputs.alphaRoughness * pbrInputs.alphaRoughness;
float f = (pbrInputs.NdotH * roughnessSq - pbrInputs.NdotH) * pbrInputs.NdotH + 1.0;
return roughnessSq / (M_PI * f * f);
vec3 pbrPunctual(vec3 diffuseColor, vec3 specularColor,
float perceptualRoughness,
float metallic,
vec3 n, // normal
vec3 v, // surface point to camera
vec3 l) //surface point to light
David Parks
committed
// make sure specular highlights from punctual lights don't fall off of polished surfaces
perceptualRoughness = max(perceptualRoughness, MIN_PBR_ROUGHNESS);
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
float alphaRoughness = perceptualRoughness * perceptualRoughness;
// Compute reflectance.
float reflectance = max(max(specularColor.r, specularColor.g), specularColor.b);
// For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect.
// For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflecance to 0%.
float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0);
vec3 specularEnvironmentR0 = specularColor.rgb;
vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0) * reflectance90;
vec3 h = normalize(l+v); // Half vector between both l and v
vec3 reflection = -normalize(reflect(v, n));
reflection.y *= -1.0f;
float NdotL = clamp(dot(n, l), 0.001, 1.0);
float NdotV = clamp(abs(dot(n, v)), 0.001, 1.0);
float NdotH = clamp(dot(n, h), 0.0, 1.0);
float LdotH = clamp(dot(l, h), 0.0, 1.0);
float VdotH = clamp(dot(v, h), 0.0, 1.0);
PBRInfo pbrInputs = PBRInfo(
NdotL,
NdotV,
NdotH,
LdotH,
VdotH,
perceptualRoughness,
metallic,
specularEnvironmentR0,
specularEnvironmentR90,
alphaRoughness,
diffuseColor,
specularColor
);
// Calculate the shading terms for the microfacet specular shading model
vec3 F = specularReflection(pbrInputs);
float G = geometricOcclusion(pbrInputs);
float D = microfacetDistribution(pbrInputs);
// Calculation of analytical lighting contribution
vec3 diffuseContrib = (1.0 - F) * diffuse(pbrInputs);
vec3 specContrib = F * G * D / (4.0 * NdotL * NdotV);
// Obtain final intensity as reflectance (BRDF) scaled by the energy of the light (cosine law)
vec3 color = NdotL * (diffuseContrib + specContrib);
David Parks
committed
return clamp(color, vec3(0), vec3(10));
David Parks
committed
}
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
vec3 pbrCalcPointLightOrSpotLight(vec3 diffuseColor, vec3 specularColor,
float perceptualRoughness,
float metallic,
vec3 n, // normal
vec3 p, // pixel position
vec3 v, // view vector (negative normalized pixel position)
vec3 lp, // light position
vec3 ld, // light direction (for spotlights)
vec3 lightColor,
float lightSize, float falloff, float is_pointlight, float ambiance)
{
vec3 color = vec3(0,0,0);
vec3 lv = lp.xyz - p;
float lightDist = length(lv);
float dist = lightDist / lightSize;
if (dist <= 1.0)
{
lv /= lightDist;
float dist_atten = calcLegacyDistanceAttenuation(dist, falloff);
// spotlight coefficient.
float spot = max(dot(-ld, lv), is_pointlight);
// spot*spot => GL_SPOT_EXPONENT=2
float spot_atten = spot*spot;
vec3 intensity = spot_atten * dist_atten * lightColor * 3.0; //magic number to balance with legacy materials
color = intensity*pbrPunctual(diffuseColor, specularColor, perceptualRoughness, metallic, n.xyz, v, lv);
}
return color;
}
Cosmic Linden
committed
void calcDiffuseSpecular(vec3 baseColor, float metallic, inout vec3 diffuseColor, inout vec3 specularColor)
{
vec3 f0 = vec3(0.04);
diffuseColor = baseColor*(vec3(1.0)-f0);
diffuseColor *= 1.0 - metallic;
specularColor = mix(f0, baseColor, metallic);
}
vec3 pbrBaseLight(vec3 diffuseColor, vec3 specularColor, float metallic, vec3 v, vec3 norm, float perceptualRoughness, vec3 light_dir, vec3 sunlit, float scol, vec3 radiance, vec3 irradiance, vec3 colorEmissive, float ao, vec3 additive, vec3 atten)
Cosmic Linden
committed
{
perceptualRoughness = max(perceptualRoughness, MIN_PBR_ROUGHNESS);
Cosmic Linden
committed
vec3 color = vec3(0);
float NdotV = clamp(abs(dot(norm, v)), 0.001, 1.0);
color += pbrIbl(diffuseColor, specularColor, radiance, irradiance, ao, NdotV, perceptualRoughness);
color += pbrPunctual(diffuseColor, specularColor, perceptualRoughness, metallic, norm, v, normalize(light_dir)) * sunlit * 3.0 * scol; //magic number to balance with legacy materials
Cosmic Linden
committed
return color;
}
uniform vec4 waterPlane;
uniform float waterSign;
// discard if given position in eye space is on the wrong side of the waterPlane according to waterSign
void waterClip(vec3 pos)
{
// TODO: make this less branchy
if (waterSign > 0)
{
if ((dot(pos.xyz, waterPlane.xyz) + waterPlane.w) < 0.0)
{
discard;
}
}
else
{
if ((dot(pos.xyz, waterPlane.xyz) + waterPlane.w) > 0.0)
{
discard;
}
}
}