Newer
Older
/**
* @file llsingleton.cpp
* @author Brad Kittenbrink
*
* $LicenseInfo:firstyear=2009&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llsingleton.h"
#include "llerror.h"
#include "llerrorcontrol.h" // LLError::is_available()
#include "lldependencies.h"
#include "llcoro_get_id.h"
#include "llexception.h"
#include <boost/foreach.hpp>
#include <boost/unordered_map.hpp>
#include <algorithm>
#include <iostream> // std::cerr in dire emergency
#include <sstream>
#include <stdexcept>
namespace {
void log(LLError::ELevel level,
const char* p1, const char* p2, const char* p3, const char* p4);
void logdebugs(const char* p1="", const char* p2="", const char* p3="", const char* p4="");
bool oktolog();
} // anonymous namespace
// Our master list of all LLSingletons is itself an LLSingleton. We used to
// store it in a function-local static, but that could get destroyed before
// the last of the LLSingletons -- and ~LLSingletonBase() definitely wants to
// remove itself from the master list. Since the whole point of this master
// list is to help track inter-LLSingleton dependencies, and since we have
// this implicit dependency from every LLSingleton to the master list, make it
// an LLSingleton.
class LLSingletonBase::MasterList:
public LLSingleton<LLSingletonBase::MasterList>
{
LLSINGLETON_EMPTY_CTOR(MasterList);
// Independently of the LLSingleton locks governing construction,
// destruction and other state changes of the MasterList instance itself,
// we must also defend each of the data structures owned by the
// MasterList.
// This must be a recursive_mutex because, while the lock is held for
// manipulating some data in the master list, we must also check whether
// it's safe to log -- which involves querying a different LLSingleton --
// which requires accessing the master list.
typedef std::recursive_mutex mutex_t;
typedef std::unique_lock<mutex_t> lock_t;
mutex_t mMutex;
public:
// Instantiate this to both obtain a reference to MasterList::instance()
// and lock its mutex for the lifespan of this Lock instance.
class Lock
{
public:
Lock():
mMasterList(MasterList::instance()),
mLock(mMasterList.mMutex)
{}
Lock(const Lock&) = delete;
Lock& operator=(const Lock&) = delete;
MasterList& get() const { return mMasterList; }
operator MasterList&() const { return get(); }
protected:
MasterList& mMasterList;
MasterList::lock_t mLock;
};
private:
// This is the master list of all instantiated LLSingletons (save the
// MasterList itself) in arbitrary order. You MUST call dep_sort() before
// traversing this list.
list_t mMaster;
public:
// Instantiate this to obtain a reference to MasterList::mMaster and to
// hold the MasterList lock for the lifespan of this LockedMaster
// instance.
struct LockedMaster: public Lock
{
list_t& get() const { return mMasterList.mMaster; }
operator list_t&() const { return get(); }
};
// We need to maintain a stack of LLSingletons currently being
// initialized, either in the constructor or in initSingleton(). However,
// managing that as a stack depends on having a DISTINCT 'initializing'
// stack for every C++ stack in the process! And we have a distinct C++
// stack for every running coroutine. It would be interesting and cool to
// implement a generic coroutine-local-storage mechanism and use that
// here. The trouble is that LLCoros is itself an LLSingleton, so
// depending on LLCoros functionality could dig us into infinite
// recursion. (Moreover, when we reimplement LLCoros on top of
// Boost.Fiber, that library already provides fiber_specific_ptr -- so
// it's not worth a great deal of time and energy implementing a generic
// equivalent on top of boost::dcoroutine, which is on its way out.)
// Instead, use a map of llcoro::id to select the appropriate
// coro-specific 'initializing' stack. llcoro::get_id() is carefully
// implemented to avoid requiring LLCoros.
typedef boost::unordered_map<llcoro::id, list_t> InitializingMap;
InitializingMap mInitializing;
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
public:
// Instantiate this to obtain a reference to the coroutine-specific
// initializing list and to hold the MasterList lock for the lifespan of
// this LockedInitializing instance.
struct LockedInitializing: public Lock
{
public:
LockedInitializing():
// only do the lookup once, cache the result
// note that the lock is already locked during this lookup
mList(&mMasterList.get_initializing_())
{}
list_t& get() const
{
if (! mList)
{
LLTHROW(std::runtime_error("Trying to use LockedInitializing "
"after cleanup_initializing()"));
}
return *mList;
}
operator list_t&() const { return get(); }
void log(const char* verb, const char* name);
void cleanup_initializing()
{
mMasterList.cleanup_initializing_();
mList = nullptr;
}
private:
// Store pointer since cleanup_initializing() must clear it.
list_t* mList;
};
private:
list_t& get_initializing_()
{
// map::operator[] has find-or-create semantics, exactly what we need
// here. It returns a reference to the selected mapped_type instance.
return mInitializing[llcoro::get_id()];
}
void cleanup_initializing_()
{
InitializingMap::iterator found = mInitializing.find(llcoro::get_id());
if (found != mInitializing.end())
{
mInitializing.erase(found);
}
}
};
void LLSingletonBase::add_master()
{
// As each new LLSingleton is constructed, add to the master list.
// This temporary LockedMaster should suffice to hold the MasterList lock
// during the push_back() call.
MasterList::LockedMaster().get().push_back(this);
}
void LLSingletonBase::remove_master()
{
// When an LLSingleton is destroyed, remove from master list.
// add_master() used to capture the iterator to the newly-added list item
// so we could directly erase() it from the master list. Unfortunately
// that runs afoul of destruction-dependency order problems. So search the
// master list, and remove this item IF FOUND. We have few enough
// LLSingletons, and they are so rarely destroyed (once per run), that the
// cost of a linear search should not be an issue.
// This temporary LockedMaster should suffice to hold the MasterList lock
// during the remove() call.
MasterList::LockedMaster().get().remove(this);
}
//static
LLSingletonBase::list_t::size_type LLSingletonBase::get_initializing_size()
return MasterList::LockedInitializing().get().size();
}
LLSingletonBase::~LLSingletonBase() {}
void LLSingletonBase::push_initializing(const char* name)
MasterList::LockedInitializing locked_list;
// log BEFORE pushing so logging singletons don't cry circularity
locked_list.log("Pushing", name);
locked_list.get().push_back(this);
}
void LLSingletonBase::pop_initializing()
{
// Lock the MasterList for the duration of this call
MasterList::LockedInitializing locked_list;
list_t& list(locked_list.get());
if (list.empty())
{
logerrs("Underflow in stack of currently-initializing LLSingletons at ",
classname(this).c_str(), "::getInstance()");
// Now we know list.back() exists: capture it
LLSingletonBase* back(list.back());
// and pop it
list.pop_back();
// The viewer launches an open-ended number of coroutines. While we don't
// expect most of them to initialize LLSingleton instances, our present
// get_initializing() logic could lead to an open-ended number of map
// entries. So every time we pop the stack back to empty, delete the entry
// entirely.
if (list.empty())
{
locked_list.cleanup_initializing();
}
// Now validate the newly-popped LLSingleton.
if (back != this)
logerrs("Push/pop mismatch in stack of currently-initializing LLSingletons: ",
classname(this).c_str(), "::getInstance() trying to pop ",
classname(back).c_str());
// log AFTER popping so logging singletons don't cry circularity
locked_list.log("Popping", typeid(*back).name());
void LLSingletonBase::reset_initializing(list_t::size_type size)
{
// called for cleanup in case the LLSingleton subclass constructor throws
// an exception
// The tricky thing about this, the reason we have a separate method
// instead of just calling pop_initializing(), is (hopefully remote)
// possibility that the exception happened *before* the
// push_initializing() call in LLSingletonBase's constructor. So only
// remove the stack top if in fact we've pushed something more than the
// previous size.
MasterList::LockedInitializing locked_list;
list_t& list(locked_list.get());
while (list.size() > size)
{
list.pop_back();
}
// as in pop_initializing()
if (list.empty())
{
locked_list.cleanup_initializing();
}
}
void LLSingletonBase::MasterList::LockedInitializing::log(const char* verb, const char* name)
{
if (oktolog())
{
LL_DEBUGS("LLSingleton") << verb << ' ' << demangle(name) << ';';
for (list_t::const_reverse_iterator ri(mList->rbegin()), rend(mList->rend());
ri != rend; ++ri)
{
LLSingletonBase* sb(*ri);
LL_CONT << ' ' << classname(sb);
}
}
LL_ENDL;
}
void LLSingletonBase::capture_dependency()
MasterList::LockedInitializing locked_list;
list_t& initializing(locked_list.get());
// Did this getInstance() call come from another LLSingleton, or from
// vanilla application code? Note that although this is a nontrivial
// method, the vast majority of its calls arrive here with initializing
// empty().
if (! initializing.empty())
{
// getInstance() is being called by some other LLSingleton. But -- is
// this a circularity? That is, does 'this' already appear in the
// initializing stack?
// For what it's worth, normally 'initializing' should contain very
// few elements.
list_t::const_iterator found =
std::find(initializing.begin(), initializing.end(), this);
if (found != initializing.end())
{
list_t::const_iterator it_next = found;
it_next++;
// Report the circularity. Requiring the coder to dig through the
// logic to diagnose exactly how we got here is less than helpful.
std::ostringstream out;
for ( ; found != initializing.end(); ++found)
{
// 'found' is an iterator; *found is an LLSingletonBase*; **found
// is the actual LLSingletonBase instance.
LLSingletonBase* foundp(*found);
out << classname(foundp) << " -> ";
// Decide which log helper to call.
if (it_next == initializing.end())
{
// Points to self after construction, but during initialization.
// Singletons can initialize other classes that depend onto them,
// so this is expected.
//
// Example: LLNotifications singleton initializes default channels.
// Channels register themselves with singleton once done.
logdebugs("LLSingleton circularity: ", out.str().c_str(),
classname(this).c_str(), "");
}
else
{
// Actual circularity with other singleton (or single singleton is used extensively).
// Dependency can be unclear.
logwarns("LLSingleton circularity: ", out.str().c_str(),
classname(this).c_str(), "");
}
else
{
// Here 'this' is NOT already in the 'initializing' stack. Great!
// Record the dependency.
// initializing.back() is the LLSingletonBase* currently being
// initialized. Store 'this' in its mDepends set.
LLSingletonBase* current(initializing.back());
if (current->mDepends.insert(this).second)
{
// only log the FIRST time we hit this dependency!
logdebugs(classname(current).c_str(),
" depends on ", classname(this).c_str());
}
}
}
//static
LLSingletonBase::vec_t LLSingletonBase::dep_sort()
{
// While it would theoretically be possible to maintain a static
// SingletonDeps through the life of the program, dynamically adding and
// removing LLSingletons as they are created and destroyed, in practice
// it's less messy to construct it on demand. The overhead of doing so
// should happen basically twice: once for cleanupAll(), once for
// deleteAll().
typedef LLDependencies<LLSingletonBase*> SingletonDeps;
SingletonDeps sdeps;
// Lock while traversing the master list
MasterList::LockedMaster master;
BOOST_FOREACH(LLSingletonBase* sp, master.get())
{
// Build the SingletonDeps structure by adding, for each
// LLSingletonBase* sp in the master list, sp itself. It has no
// associated value type in our SingletonDeps, hence the 0. We don't
// record the LLSingletons it must follow; rather, we record the ones
// it must precede. Copy its mDepends to a KeyList to express that.
sdeps.add(sp, 0,
SingletonDeps::KeyList(),
SingletonDeps::KeyList(sp->mDepends.begin(), sp->mDepends.end()));
}
vec_t ret;
ret.reserve(master.get().size());
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
// We should be able to effect this with a transform_iterator that
// extracts just the first (key) element from each sorted_iterator, then
// uses vec_t's range constructor... but frankly this is more
// straightforward, as long as we remember the above reserve() call!
BOOST_FOREACH(SingletonDeps::sorted_iterator::value_type pair, sdeps.sort())
{
ret.push_back(pair.first);
}
// The master list is not itself pushed onto the master list. Add it as
// the very last entry -- it is the LLSingleton on which ALL others
// depend! -- so our caller will process it.
ret.push_back(MasterList::getInstance());
return ret;
}
//static
void LLSingletonBase::cleanupAll()
{
// It's essential to traverse these in dependency order.
BOOST_FOREACH(LLSingletonBase* sp, dep_sort())
{
// Call cleanupSingleton() only if we haven't already done so for this
// instance.
if (! sp->mCleaned)
{
sp->mCleaned = true;
logdebugs("calling ",
classname(sp).c_str(), "::cleanupSingleton()");
try
{
sp->cleanupSingleton();
}
catch (const std::exception& e)
{
logwarns("Exception in ", classname(sp).c_str(),
"::cleanupSingleton(): ", e.what());
}
catch (...)
{
logwarns("Unknown exception in ", classname(sp).c_str(),
"::cleanupSingleton()");
}
}
}
}
void LLSingletonBase::cleanup_()
{
logdebugs("calling ", classname(this).c_str(), "::cleanupSingleton()");
try
{
cleanupSingleton();
}
catch (...)
{
LOG_UNHANDLED_EXCEPTION(classname(this) + "::cleanupSingleton()");
}
}
//static
void LLSingletonBase::deleteAll()
{
// It's essential to traverse these in dependency order.
BOOST_FOREACH(LLSingletonBase* sp, dep_sort())
{
// Capture the class name first: in case of exception, don't count on
// being able to extract it later.
const std::string name = classname(sp);
try
{
// Call static method through instance function pointer.
if (! sp->mDeleteSingleton)
{
// This Should Not Happen... but carry on.
logwarns(name.c_str(), "::mDeleteSingleton not initialized!");
}
else
{
// properly initialized: call it.
logdebugs("calling ", name.c_str(), "::deleteSingleton()");
// From this point on, DO NOT DEREFERENCE sp!
sp->mDeleteSingleton();
}
}
catch (const std::exception& e)
{
logwarns("Exception in ", name.c_str(), "::deleteSingleton(): ", e.what());
}
catch (...)
{
logwarns("Unknown exception in ", name.c_str(), "::deleteSingleton()");
}
}
}
/*---------------------------- Logging helpers -----------------------------*/
namespace {
bool oktolog()
{
// See comments in log() below.
return LLError::is_available();
void log(LLError::ELevel level,
const char* p1, const char* p2, const char* p3, const char* p4)
// The is_available() test below ensures that we'll stop logging once
// LLError has been cleaned up. If we had a similar portable test for
// std::cerr, this would be a good place to use it.
// Check LLError::is_available() because some of LLError's infrastructure
// is itself an LLSingleton. If that LLSingleton has not yet been
// initialized, trying to log will engage LLSingleton machinery... and
// around and around we go.
if (LLError::is_available())
{
LL_VLOGS(level, "LLSingleton") << p1 << p2 << p3 << p4 << LL_ENDL;
}
else
{
// Caller may be a test program, or something else whose stderr is
// visible to the user.
std::cerr << p1 << p2 << p3 << p4 << std::endl;
}
void logdebugs(const char* p1, const char* p2, const char* p3, const char* p4)
{
log(LLError::LEVEL_DEBUG, p1, p2, p3, p4);
}
} // anonymous namespace
void LLSingletonBase::logwarns(const char* p1, const char* p2, const char* p3, const char* p4)
log(LLError::LEVEL_WARN, p1, p2, p3, p4);
}
//static
void LLSingletonBase::loginfos(const char* p1, const char* p2, const char* p3, const char* p4)
{
log(LLError::LEVEL_INFO, p1, p2, p3, p4);
}
//static
void LLSingletonBase::logerrs(const char* p1, const char* p2, const char* p3, const char* p4)
{
log(LLError::LEVEL_ERROR, p1, p2, p3, p4);
// The other important side effect of LL_ERRS() is
// https://www.youtube.com/watch?v=OMG7paGJqhQ (emphasis on OMG)
std::ostringstream out;
out << p1 << p2 << p3 << p4;
auto crash = LLError::getFatalFunction();
if (crash)
{
crash(out.str());
}
else
{
LLError::crashAndLoop(out.str());
}
std::string LLSingletonBase::demangle(const char* mangled)
{
return LLError::Log::demangle(mangled);
}