Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/**
* @file llleap_test.cpp
* @author Nat Goodspeed
* @date 2012-02-21
* @brief Test for llleap.
*
* $LicenseInfo:firstyear=2012&license=viewerlgpl$
* Copyright (c) 2012, Linden Research, Inc.
* $/LicenseInfo$
*/
// Precompiled header
#include "linden_common.h"
// associated header
#include "llleap.h"
// STL headers
// std headers
// external library headers
#include <boost/assign/list_of.hpp>
#include <boost/lambda/lambda.hpp>
#include <boost/foreach.hpp>
// other Linden headers
#include "../test/lltut.h"
#include "../test/namedtempfile.h"
#include "../test/manageapr.h"
#include "../test/catch_and_store_what_in.h"
#include "wrapllerrs.h"
#include "llevents.h"
#include "llprocess.h"
#include "stringize.h"
#include "StringVec.h"
using boost::assign::list_of;
static ManageAPR manager;
StringVec sv(const StringVec& listof) { return listof; }
#if defined(LL_WINDOWS)
#define sleep(secs) _sleep((secs) * 1000)
#endif
const size_t BUFFERED_LENGTH = 1024*1023; // try wrangling just under a megabyte of data
void waitfor(const std::vector<LLLeap*>& instances, int timeout=60)
int i;
for (i = 0; i < timeout; ++i)
{
// Every iteration, test whether any of the passed LLLeap instances
// still exist (are still running).
std::vector<LLLeap*>::const_iterator vli(instances.begin()), vlend(instances.end());
for ( ; vli != vlend; ++vli)
{
// getInstance() returns NULL if it's terminated/gone, non-NULL if
// it's still running
if (LLLeap::getInstance(*vli))
break;
}
// If we made it through all of 'instances' without finding one that's
// still running, we're done.
if (vli == vlend)
{
/*==========================================================================*|
std::cout << instances.size() << " LLLeap instances terminated in "
<< i << " seconds, proceeding" << std::endl;
|*==========================================================================*/
// Found an instance that's still running. Wait and pump LLProcess.
sleep(1);
LLEventPumps::instance().obtain("mainloop").post(LLSD());
}
tut::ensure(STRINGIZE("at least 1 of " << instances.size()
<< " LLLeap instances timed out ("
<< timeout << " seconds) without terminating"),
i < timeout);
void waitfor(LLLeap* instance, int timeout=60)
{
std::vector<LLLeap*> instances;
instances.push_back(instance);
waitfor(instances, timeout);
}
/*****************************************************************************
* TUT
*****************************************************************************/
namespace tut
{
struct llleap_data
{
llleap_data():
reader(".py",
// This logic is adapted from vita.viewerclient.receiveEvent()
boost::lambda::_1 <<
"import re\n"
"import os\n"
"import sys\n"
"\n"
// Don't forget that this Python script is written to some
// temp directory somewhere! Its __file__ is useless in
// finding indra/lib/python. Use our __FILE__, with
// raw-string syntax to deal with Windows pathnames.
"mydir = os.path.dirname(r'" << __FILE__ << "')\n"
"try:\n"
" from llbase import llsd\n"
"except ImportError:\n"
// We expect mydir to be .../indra/llcommon/tests.
" sys.path.insert(0,\n"
" os.path.join(mydir, os.pardir, os.pardir, 'lib', 'python'))\n"
" from indra.base import llsd\n"
"\n"
"class ProtocolError(Exception):\n"
" def __init__(self, msg, data):\n"
" Exception.__init__(self, msg)\n"
" self.data = data\n"
"\n"
"class ParseError(ProtocolError):\n"
"\n"
"def get():\n"
" hdr = ''\n"
" while ':' not in hdr and len(hdr) < 20:\n"
" hdr += sys.stdin.read(1)\n"
" if not hdr:\n"
" sys.exit(0)\n"
" if not hdr.endswith(':'):\n"
" raise ProtocolError('Expected len:data, got %r' % hdr, hdr)\n"
" length = int(hdr[:-1])\n"
" except ValueError:\n"
" raise ProtocolError('Non-numeric len %r' % hdr[:-1], hdr[:-1])\n"
" parts = []\n"
" received = 0\n"
" while received < length:\n"
" parts.append(sys.stdin.read(length - received))\n"
" received += len(parts[-1])\n"
" data = ''.join(parts)\n"
" assert len(data) == length\n"
" try:\n"
" return llsd.parse(data)\n"
// Seems the old indra.base.llsd module didn't properly
// convert IndexError (from running off end of string) to
// LLSDParseError.
" except (IndexError, llsd.LLSDParseError), e:\n"
" msg = 'Bad received packet (%s)' % e\n"
" print >>sys.stderr, '%s, %s bytes:' % (msg, len(data))\n"
" showmax = 40\n"
// We've observed failures with very large packets;
// dumping the entire packet wastes time and space.
// But if the error states a particular byte offset,
// truncate to (near) that offset when dumping data.
" location = re.search(r' at (byte|index) ([0-9]+)', str(e))\n"
" if not location:\n"
" # didn't find offset, dump whole thing, no ellipsis\n"
" ellipsis = ''\n"
" else:\n"
" # found offset within error message\n"
" trunc = int(location.group(2)) + showmax\n"
" data = data[:trunc]\n"
" ellipsis = '... (%s more)' % (length - trunc)\n"
" offset = -showmax\n"
" for offset in xrange(0, len(data)-showmax, showmax):\n"
" print >>sys.stderr, '%04d: %r +' % \\\n"
" (offset, data[offset:offset+showmax])\n"
" offset += showmax\n"
" print >>sys.stderr, '%04d: %r%s' % \\\n"
" (offset, data[offset:], ellipsis)\n"
" raise ParseError(msg, data)\n"
"\n"
"# deal with initial stdin message\n"
// this will throw if the initial write to stdin doesn't
// follow len:data protocol, or if we couldn't find 'pump'
// in the dict
"_reply = get()['pump']\n"
"\n"
"def replypump():\n"
" return _reply\n"
"\n"
"def put(req):\n"
" sys.stdout.write(':'.join((str(len(req)), req)))\n"
" sys.stdout.flush()\n"
"\n"
"def send(pump, data):\n"
" put(llsd.format_notation(dict(pump=pump, data=data)))\n"
"def request(pump, data):\n"
" # we expect 'data' is a dict\n"
" data['reply'] = _reply\n"
" send(pump, data)\n"),
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// Get the actual pathname of the NamedExtTempFile and trim off
// the ".py" extension. (We could cache reader.getName() in a
// separate member variable, but I happen to know getName() just
// returns a NamedExtTempFile member rather than performing any
// computation, so I don't mind calling it twice.) Then take the
// basename.
reader_module(LLProcess::basename(
reader.getName().substr(0, reader.getName().length()-3))),
pPYTHON(getenv("PYTHON")),
PYTHON(pPYTHON? pPYTHON : "")
{
ensure("Set PYTHON to interpreter pathname", pPYTHON);
}
NamedExtTempFile reader;
const std::string reader_module;
const char* pPYTHON;
const std::string PYTHON;
};
typedef test_group<llleap_data> llleap_group;
typedef llleap_group::object object;
llleap_group llleapgrp("llleap");
template<> template<>
void object::test<1>()
{
set_test_name("multiple LLLeap instances");
NamedTempFile script("py",
"import time\n"
"time.sleep(1)\n");
std::vector<LLLeap*> instances;
instances.push_back(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
instances.push_back(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
// In this case we're simply establishing that two LLLeap instances
// can coexist without throwing exceptions or bombing in any other
// way. Wait for them to terminate.
waitfor(instances);
}
template<> template<>
void object::test<2>()
{
set_test_name("stderr to log");
NamedTempFile script("py",
"import sys\n"
"sys.stderr.write('''Hello from Python!\n"
"note partial line''')\n");
CaptureLog log(LLError::LEVEL_INFO);
waitfor(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
log.messageWith("Hello from Python!");
log.messageWith("note partial line");
}
template<> template<>
void object::test<3>()
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
{
set_test_name("bad stdout protocol");
NamedTempFile script("py",
"print 'Hello from Python!'\n");
CaptureLog log(LLError::LEVEL_WARN);
waitfor(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
ensure_contains("error log line",
log.messageWith("invalid protocol"), "Hello from Python!");
}
template<> template<>
void object::test<4>()
{
set_test_name("leftover stdout");
NamedTempFile script("py",
"import sys\n"
// note lack of newline
"sys.stdout.write('Hello from Python!')\n");
CaptureLog log(LLError::LEVEL_WARN);
waitfor(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
ensure_contains("error log line",
log.messageWith("Discarding"), "Hello from Python!");
}
template<> template<>
void object::test<5>()
{
set_test_name("bad stdout len prefix");
NamedTempFile script("py",
"import sys\n"
"sys.stdout.write('5a2:something')\n");
CaptureLog log(LLError::LEVEL_WARN);
waitfor(LLLeap::create(get_test_name(),
sv(list_of(PYTHON)(script.getName()))));
ensure_contains("error log line",
log.messageWith("invalid protocol"), "5a2:");
}
template<> template<>
void object::test<6>()
{
set_test_name("empty plugin vector");
std::string threw;
try
{
LLLeap::create("empty", StringVec());
}
CATCH_AND_STORE_WHAT_IN(threw, LLLeap::Error)
ensure_contains("LLLeap::Error", threw, "no plugin");
// try the suppress-exception variant
ensure("bad launch returned non-NULL", ! LLLeap::create("empty", StringVec(), false));
}
template<> template<>
void object::test<7>()
{
set_test_name("bad launch");
// Synthesize bogus executable name
std::string BADPYTHON(PYTHON.substr(0, PYTHON.length()-1) + "x");
CaptureLog log;
std::string threw;
try
{
LLLeap::create("bad exe", BADPYTHON);
}
CATCH_AND_STORE_WHAT_IN(threw, LLLeap::Error)
ensure_contains("LLLeap::create() didn't throw", threw, "failed");
log.messageWith("failed");
log.messageWith(BADPYTHON);
// try the suppress-exception variant
ensure("bad launch returned non-NULL", ! LLLeap::create("bad exe", BADPYTHON, false));
}
// Generic self-contained listener: derive from this and override its
// call() method, then tell somebody to post on the pump named getName().
// Control will reach your call() override.
struct ListenerBase
{
// Pass the pump name you want; will tweak for uniqueness.
ListenerBase(const std::string& name):
mPump(name, true)
{
mPump.listen(name, boost::bind(&ListenerBase::call, this, _1));
}
virtual ~ListenerBase() {} // pacify MSVC
virtual bool call(const LLSD& request)
{
return false;
}
LLEventPump& getPump() { return mPump; }
const LLEventPump& getPump() const { return mPump; }
std::string getName() const { return mPump.getName(); }
void post(const LLSD& data) { mPump.post(data); }
LLEventStream mPump;
};
// Mimic a dummy little LLEventAPI that merely sends a reply back to its
// requester on the "reply" pump.
struct AckAPI: public ListenerBase
AckAPI(): ListenerBase("AckAPI") {}
virtual bool call(const LLSD& request)
LLEventPumps::instance().obtain(request["reply"]).post("ack");
return false;
};
// Give LLLeap script a way to post success/failure.
struct Result: public ListenerBase
{
Result(): ListenerBase("Result") {}
virtual bool call(const LLSD& request)
mData = request;
return false;
}
void ensure() const
{
tut::ensure(std::string("never posted to ") + getName(), mData.isDefined());
// Post an empty string for success, non-empty string is failure message.
tut::ensure(mData, mData.asString().empty());
}
LLSD mData;
};
template<> template<>
void object::test<8>()
{
set_test_name("round trip");
AckAPI api;
Result result;
NamedTempFile script("py",
boost::lambda::_1 <<
"from " << reader_module << " import *\n"
// make a request on our little API
"request(pump='" << api.getName() << "', data={})\n"
// wait for its response
"resp = get()\n"
"result = '' if resp == dict(pump=replypump(), data='ack')\\\n"
" else 'bad: ' + str(resp)\n"
"send(pump='" << result.getName() << "', data=result)\n");
waitfor(LLLeap::create(get_test_name(), sv(list_of(PYTHON)(script.getName()))));
result.ensure();
struct ReqIDAPI: public ListenerBase
{
ReqIDAPI(): ListenerBase("ReqIDAPI") {}
virtual bool call(const LLSD& request)
{
// free function from llevents.h
sendReply(LLSD(), request);
return false;
}
};
template<> template<>
void object::test<9>()
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
{
set_test_name("many small messages");
// It's not clear to me whether there's value in iterating many times
// over a send/receive loop -- I don't think that will exercise any
// interesting corner cases. This test first sends a large number of
// messages, then receives all the responses. The intent is to ensure
// that some of that data stream crosses buffer boundaries, loop
// iterations etc. in OS pipes and the LLLeap/LLProcess implementation.
ReqIDAPI api;
Result result;
NamedTempFile script("py",
boost::lambda::_1 <<
"import sys\n"
"from " << reader_module << " import *\n"
// Note that since reader imports llsd, this
// 'import *' gets us llsd too.
"sample = llsd.format_notation(dict(pump='" <<
api.getName() << "', data=dict(reqid=999999, reply=replypump())))\n"
// The whole packet has length prefix too: "len:data"
"samplen = len(str(len(sample))) + 1 + len(sample)\n"
// guess how many messages it will take to
// accumulate BUFFERED_LENGTH
"count = int(" << BUFFERED_LENGTH << "/samplen)\n"
"print >>sys.stderr, 'Sending %s requests' % count\n"
"for i in xrange(count):\n"
" request('" << api.getName() << "', dict(reqid=i))\n"
// The assumption in this specific test that
// replies will arrive in the same order as
// requests is ONLY valid because the API we're
// invoking sends replies instantly. If the API
// had to wait for some external event before
// sending its reply, replies could arrive in
// arbitrary order, and we'd have to tick them
// off from a set.
"result = ''\n"
"for i in xrange(count):\n"
" resp = get()\n"
" if resp['data']['reqid'] != i:\n"
" result = 'expected reqid=%s in %s' % (i, resp)\n"
" break\n"
"send(pump='" << result.getName() << "', data=result)\n");
waitfor(LLLeap::create(get_test_name(), sv(list_of(PYTHON)(script.getName()))),
300); // needs more realtime than most tests
result.ensure();
}
// This is the body of test<10>, extracted so we can run it over a number
// of large-message sizes.
void test_large_message(const std::string& PYTHON, const std::string& reader_module,
const std::string& test_name, size_t size)
{
ReqIDAPI api;
Result result;
NamedTempFile script("py",
boost::lambda::_1 <<
"import sys\n"
"from " << reader_module << " import *\n"
// Generate a very large string value.
"desired = int(sys.argv[1])\n"
// 7 chars per item: 6 digits, 1 comma
"count = int((desired - 50)/7)\n"
"large = ''.join('%06d,' % i for i in xrange(count))\n"
// Pass 'large' as reqid because we know the API
// will echo reqid, and we want to receive it back.
"request('" << api.getName() << "', dict(reqid=large))\n"
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
"try:\n"
" resp = get()\n"
"except ParseError, e:\n"
" # try to find where e.data diverges from expectation\n"
// Normally we'd expect a 'pump' key in there,
// too, with value replypump(). But Python
// serializes keys in a different order than C++,
// so incoming data start with 'data'.
// Truthfully, though, if we get as far as 'pump'
// before we find a difference, something's very
// strange.
" expect = llsd.format_notation(dict(data=dict(reqid=large)))\n"
" chunk = 40\n"
" for offset in xrange(0, max(len(e.data), len(expect)), chunk):\n"
" if e.data[offset:offset+chunk] != \\\n"
" expect[offset:offset+chunk]:\n"
" print >>sys.stderr, 'Offset %06d: expect %r,\\n'\\\n"
" ' get %r' %\\\n"
" (offset,\n"
" expect[offset:offset+chunk],\n"
" e.data[offset:offset+chunk])\n"
" break\n"
" else:\n"
" print >>sys.stderr, 'incoming data matches expect?!'\n"
" send('" << result.getName() << "', '%s: %s' % (e.__class__.__name__, e))\n"
" sys.exit(1)\n"
"\n"
"echoed = resp['data']['reqid']\n"
"if echoed == large:\n"
" send('" << result.getName() << "', '')\n"
" sys.exit(0)\n"
// Here we know echoed did NOT match; try to find where
"for i in xrange(count):\n"
" start = 7*i\n"
" end = 7*(i+1)\n"
" if end > len(echoed)\\\n"
" or echoed[start:end] != large[start:end]:\n"
" send('" << result.getName() << "',\n"
" 'at offset %s, expected %r but got %r' %\n"
" (start, large[start:end], echoed[start:end]))\n"
"sys.exit(1)\n");
waitfor(LLLeap::create(test_name,
sv(list_of
(PYTHON)
(script.getName())
(stringize(size)))),
180); // try a longer timeout
result.ensure();
}
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
// The point of this function is to try to find a size at which
// test_large_message() can succeed. We still want the overall test to
// fail; otherwise we won't get the coder's attention -- but if
// test_large_message() fails, try to find a plausible size at which it
// DOES work.
void test_or_split(const std::string& PYTHON, const std::string& reader_module,
const std::string& test_name, size_t size)
{
try
{
test_large_message(PYTHON, reader_module, test_name, size);
}
catch (const failure& e)
{
std::cout << "test_large_message(" << size << ") failed: " << e.what() << std::endl;
// If it still fails below 4K, give up: subdividing any further is
// pointless.
if (size >= 4096)
{
try
{
// Recur with half the size
size_t smaller(size/2);
test_or_split(PYTHON, reader_module, test_name, smaller);
// Recursive call will throw if test_large_message()
// failed, therefore we only reach the line below if it
// succeeded.
std::cout << "but test_large_message(" << smaller << ") succeeded" << std::endl;
}
catch (const failure&)
{
// The recursive test_or_split() call above has already
// handled the exception. We don't want our caller to see
// innermost exception; propagate outermost (below).
}
}
// In any case, because we reached here through failure of
// our original test_large_message(size) call, ensure failure
// propagates.
throw e;
}
}
template<> template<>
void object::test<10>()
{
set_test_name("very large message");
test_or_split(PYTHON, reader_module, get_test_name(), BUFFERED_LENGTH);
}
} // namespace tut