Newer
Older
/**
* @file llprocess.cpp
* @brief Utility class for launching, terminating, and tracking the state of processes.
*
* $LicenseInfo:firstyear=2008&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llprocess.h"
#include "llsdserialize.h"
#include "llsingleton.h"
#include "llstring.h"
#include "stringize.h"
#include "llapr.h"
#include "apr_signal.h"
#include "llevents.h"
#include <boost/foreach.hpp>
#include <boost/bind.hpp>
#include <boost/asio/streambuf.hpp>
#include <boost/asio/buffers_iterator.hpp>
#include <iostream>
#include <stdexcept>
#include <limits>
#include <algorithm>
#include <vector>
#include <typeinfo>
#include <utility>
static const char* whichfile[] = { "stdin", "stdout", "stderr" };
static std::string empty;
static LLProcess::Status interpret_status(int status);
static std::string getDesc(const LLProcess::Params& params);
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/**
* Ref-counted "mainloop" listener. As long as there are still outstanding
* LLProcess objects, keep listening on "mainloop" so we can keep polling APR
* for process status.
*/
class LLProcessListener
{
LOG_CLASS(LLProcessListener);
public:
LLProcessListener():
mCount(0)
{}
void addPoll(const LLProcess&)
{
// Unconditionally increment mCount. If it was zero before
// incrementing, listen on "mainloop".
if (mCount++ == 0)
{
LL_DEBUGS("LLProcess") << "listening on \"mainloop\"" << LL_ENDL;
mConnection = LLEventPumps::instance().obtain("mainloop")
.listen("LLProcessListener", boost::bind(&LLProcessListener::tick, this, _1));
}
}
void dropPoll(const LLProcess&)
{
// Unconditionally decrement mCount. If it's zero after decrementing,
// stop listening on "mainloop".
if (--mCount == 0)
{
LL_DEBUGS("LLProcess") << "disconnecting from \"mainloop\"" << LL_ENDL;
mConnection.disconnect();
}
}
private:
/// called once per frame by the "mainloop" LLEventPump
bool tick(const LLSD&)
{
// Tell APR to sense whether each registered LLProcess is still
// running and call handle_status() appropriately. We should be able
// to get the same info from an apr_proc_wait(APR_NOWAIT) call; but at
// least in APR 1.4.2, testing suggests that even with APR_NOWAIT,
// apr_proc_wait() blocks the caller. We can't have that in the
// viewer. Hence the callback rigmarole. (Once we update APR, it's
// probably worth testing again.) Also -- although there's an
// apr_proc_other_child_refresh() call, i.e. get that information for
// one specific child, it accepts an 'apr_other_child_rec_t*' that's
// mentioned NOWHERE else in the documentation or header files! I
// would use the specific call in LLProcess::getStatus() if I knew
// how. As it is, each call to apr_proc_other_child_refresh_all() will
// call callbacks for ALL still-running child processes. That's why we
// centralize such calls, using "mainloop" to ensure it happens once
// per frame, and refcounting running LLProcess objects to remain
// registered only while needed.
LL_DEBUGS("LLProcess") << "calling apr_proc_other_child_refresh_all()" << LL_ENDL;
apr_proc_other_child_refresh_all(APR_OC_REASON_RUNNING);
return false;
}
/// If this object is destroyed before mCount goes to zero, stop
/// listening on "mainloop" anyway.
LLTempBoundListener mConnection;
unsigned mCount;
};
static LLProcessListener sProcessListener;
LLProcess::BasePipe::~BasePipe() {}
const LLProcess::BasePipe::size_type
LLProcess::BasePipe::npos((std::numeric_limits<LLProcess::BasePipe::size_type>::max)());
class WritePipeImpl: public LLProcess::WritePipe
{
LOG_CLASS(WritePipeImpl);
public:
WritePipeImpl(const std::string& desc, apr_file_t* pipe):
mDesc(desc),
mPipe(pipe),
// Essential to initialize our std::ostream with our special streambuf!
mStream(&mStreambuf)
{
mConnection = LLEventPumps::instance().obtain("mainloop")
.listen(LLEventPump::inventName("WritePipe"),
boost::bind(&WritePipeImpl::tick, this, _1));
}
virtual std::ostream& get_ostream() { return mStream; }
bool tick(const LLSD&)
{
typedef boost::asio::streambuf::const_buffers_type const_buffer_sequence;
// If there's anything to send, try to send it.
std::size_t total(mStreambuf.size()), consumed(0);
if (total)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
const_buffer_sequence bufs = mStreambuf.data();
// In general, our streambuf might contain a number of different
// physical buffers; iterate over those.
for (const_buffer_sequence::const_iterator bufi(bufs.begin()), bufend(bufs.end());
bufi != bufend; ++bufi)
{
// http://www.boost.org/doc/libs/1_49_0_beta1/doc/html/boost_asio/reference/buffer.html#boost_asio.reference.buffer.accessing_buffer_contents
std::size_t towrite(boost::asio::buffer_size(*bufi));
apr_size_t written(towrite);
apr_status_t err = apr_file_write(mPipe,
boost::asio::buffer_cast<const void*>(*bufi),
&written);
// EAGAIN is exactly what we want from a nonblocking pipe.
// Rather than waiting for data, it should return immediately.
if (! (err == APR_SUCCESS || APR_STATUS_IS_EAGAIN(err)))
{
LL_WARNS("LLProcess") << "apr_file_write(" << towrite << ") on " << mDesc
<< " got " << err << ":" << LL_ENDL;
ll_apr_warn_status(err);
}
// 'written' is modified to reflect the number of bytes actually
// written. Make sure we consume those later. (Don't consume them
// now, that would invalidate the buffer iterator sequence!)
consumed += written;
LL_DEBUGS("LLProcess") << "wrote " << written << " of " << towrite
<< " bytes to " << mDesc
<< " (original " << total << ")" << LL_ENDL;
// The parent end of this pipe is nonblocking. If we weren't able
// to write everything we wanted, don't keep banging on it -- that
// won't change until the child reads some. Wait for next tick().
if (written < towrite)
break;
}
// In all, we managed to write 'consumed' bytes. Remove them from the
// streambuf so we don't keep trying to send them. This could be
// anywhere from 0 up to mStreambuf.size(); anything we haven't yet
// sent, we'll try again later.
mStreambuf.consume(consumed);
return false;
}
private:
std::string mDesc;
apr_file_t* mPipe;
LLTempBoundListener mConnection;
boost::asio::streambuf mStreambuf;
std::ostream mStream;
};
class ReadPipeImpl: public LLProcess::ReadPipe
{
LOG_CLASS(ReadPipeImpl);
public:
ReadPipeImpl(const std::string& desc, apr_file_t* pipe):
mDesc(desc),
mPipe(pipe),
// Essential to initialize our std::istream with our special streambuf!
mStream(&mStreambuf),
mPump("ReadPipe", true), // tweak name as needed to avoid collisions
// use funky syntax to call max() to avoid blighted max() macros
mLimit(npos)
{
mConnection = LLEventPumps::instance().obtain("mainloop")
.listen(LLEventPump::inventName("ReadPipe"),
boost::bind(&ReadPipeImpl::tick, this, _1));
}
// Much of the implementation is simply connecting the abstract virtual
// methods with implementation data concealed from the base class.
virtual std::istream& get_istream() { return mStream; }
virtual LLEventPump& getPump() { return mPump; }
virtual void setLimit(size_type limit) { mLimit = limit; }
virtual size_type getLimit() const { return mLimit; }
virtual size_type size() const { return mStreambuf.size(); }
virtual std::string peek(size_type offset=0, size_type len=npos) const
{
// Constrain caller's offset and len to overlap actual buffer content.
std::size_t real_offset = (std::min)(mStreambuf.size(), std::size_t(offset));
size_type want_end = (len == npos)? npos : (real_offset + len);
std::size_t real_end = (std::min)(mStreambuf.size(), std::size_t(want_end));
boost::asio::streambuf::const_buffers_type cbufs = mStreambuf.data();
return std::string(boost::asio::buffers_begin(cbufs) + real_offset,
boost::asio::buffers_begin(cbufs) + real_end);
}
virtual size_type find(const std::string& seek, size_type offset=0) const
// If we're passing a string of length 1, use find(char), which can
// use an O(n) std::find() rather than the O(n^2) std::search().
if (seek.length() == 1)
{
return find(seek[0], offset);
}
// If offset is beyond the whole buffer, can't even construct a valid
// iterator range; can't possibly find the string we seek.
if (offset > mStreambuf.size())
{
return npos;
}
boost::asio::streambuf::const_buffers_type cbufs = mStreambuf.data();
boost::asio::buffers_iterator<boost::asio::streambuf::const_buffers_type>
begin(boost::asio::buffers_begin(cbufs)),
end (boost::asio::buffers_end(cbufs)),
found(std::search(begin + offset, end, seek.begin(), seek.end()));
return (found == end)? npos : (found - begin);
virtual size_type find(char seek, size_type offset=0) const
// If offset is beyond the whole buffer, can't even construct a valid
// iterator range; can't possibly find the char we seek.
if (offset > mStreambuf.size())
return npos;
boost::asio::streambuf::const_buffers_type cbufs = mStreambuf.data();
boost::asio::buffers_iterator<boost::asio::streambuf::const_buffers_type>
begin(boost::asio::buffers_begin(cbufs)),
end (boost::asio::buffers_end(cbufs)),
found(std::find(begin + offset, end, seek));
return (found == end)? npos : (found - begin);
}
private:
bool tick(const LLSD&)
{
typedef boost::asio::streambuf::mutable_buffers_type mutable_buffer_sequence;
// Try, every time, to read into our streambuf. In fact, we have no
// idea how much data the child might be trying to send: keep trying
// until we're convinced we've temporarily exhausted the pipe.
bool exhausted = false;
std::size_t committed(0);
do
// attempt to read an arbitrary size
mutable_buffer_sequence bufs = mStreambuf.prepare(4096);
// In general, the mutable_buffer_sequence returned by prepare() might
// contain a number of different physical buffers; iterate over those.
std::size_t tocommit(0);
for (mutable_buffer_sequence::const_iterator bufi(bufs.begin()), bufend(bufs.end());
bufi != bufend; ++bufi)
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
// http://www.boost.org/doc/libs/1_49_0_beta1/doc/html/boost_asio/reference/buffer.html#boost_asio.reference.buffer.accessing_buffer_contents
std::size_t toread(boost::asio::buffer_size(*bufi));
apr_size_t gotten(toread);
apr_status_t err = apr_file_read(mPipe,
boost::asio::buffer_cast<void*>(*bufi),
&gotten);
// EAGAIN is exactly what we want from a nonblocking pipe.
// Rather than waiting for data, it should return immediately.
if (! (err == APR_SUCCESS || APR_STATUS_IS_EAGAIN(err)))
{
// Handle EOF specially: it's part of normal-case processing.
if (err == APR_EOF)
{
LL_DEBUGS("LLProcess") << "EOF on " << mDesc << LL_ENDL;
}
else
{
LL_WARNS("LLProcess") << "apr_file_read(" << toread << ") on " << mDesc
<< " got " << err << ":" << LL_ENDL;
ll_apr_warn_status(err);
}
// Either way, though, we won't need any more tick() calls.
mConnection.disconnect();
exhausted = true; // also break outer retry loop
break;
}
// 'gotten' was modified to reflect the number of bytes actually
// received. Make sure we commit those later. (Don't commit them
// now, that would invalidate the buffer iterator sequence!)
tocommit += gotten;
LL_DEBUGS("LLProcess") << "read " << gotten << " of " << toread
<< " bytes from " << mDesc << LL_ENDL;
// The parent end of this pipe is nonblocking. If we weren't even
// able to fill this buffer, don't loop to try to fill the next --
// that won't change until the child writes more. Wait for next
// tick().
if (gotten < toread)
{
// break outer retry loop too
exhausted = true;
break;
}
// Don't forget to "commit" the data!
mStreambuf.commit(tocommit);
committed += tocommit;
// 'exhausted' is set when we can't fill any one buffer of the
// mutable_buffer_sequence established by the current prepare()
// call -- whether due to error or not enough bytes. That is,
// 'exhausted' is still false when we've filled every physical
// buffer in the mutable_buffer_sequence. In that case, for all we
// know, the child might have still more data pending -- go for it!
} while (! exhausted);
if (committed)
{
// If we actually received new data, publish it on our LLEventPump
// as advertised. Constrain it by mLimit. But show listener the
// actual accumulated buffer size, regardless of mLimit.
size_type datasize((std::min)(mLimit, size_type(mStreambuf.size())));
mPump.post(LLSDMap
("data", peek(0, datasize))
("len", LLSD::Integer(mStreambuf.size())));
return false;
}
std::string mDesc;
apr_file_t* mPipe;
LLTempBoundListener mConnection;
boost::asio::streambuf mStreambuf;
std::istream mStream;
LLEventStream mPump;
size_type mLimit;
};
/// Need an exception to avoid constructing an invalid LLProcess object, but
/// internal use only
struct LLProcessError: public std::runtime_error
{
LLProcessError(const std::string& msg): std::runtime_error(msg) {}
};
LLProcessPtr LLProcess::create(const LLSDOrParams& params)
{
try
{
return LLProcessPtr(new LLProcess(params));
}
catch (const LLProcessError& e)
{
LL_WARNS("LLProcess") << e.what() << LL_ENDL;
// If caller is requesting an event on process termination, send one
// indicating bad launch. This may prevent someone waiting forever for
// a termination post that can't arrive because the child never
// started.
if (! std::string(params.postend).empty())
{
LLEventPumps::instance().obtain(params.postend)
.post(LLSDMap
// no "id"
("desc", getDesc(params))
("state", LLProcess::UNSTARTED)
// no "data"
("string", e.what())
);
}
return LLProcessPtr();
}
}
/// Call an apr function returning apr_status_t. On failure, log warning and
/// throw LLProcessError mentioning the function call that produced that
/// result.
#define chkapr(func) \
if (ll_apr_warn_status(func)) \
throw LLProcessError(#func " failed")
LLProcess::LLProcess(const LLSDOrParams& params):
mAutokill(params.autokill),
mPipes(NSLOTS)
// Hmm, when you construct a ptr_vector with a size, it merely reserves
// space, it doesn't actually make it that big. Explicitly make it bigger.
// Because of ptr_vector's odd semantics, have to push_back(0) the right
// number of times! resize() wants to default-construct new BasePipe
// instances, which fails because it's pure virtual. But because of the
// constructor call, these push_back() calls should require no new
// allocation.
for (size_t i = 0; i < mPipes.capacity(); ++i)
mPipes.push_back(0);
if (! params.validateBlock(true))
throw LLProcessError(STRINGIZE("not launched: failed parameter validation\n"
<< LLSDNotationStreamer(params)));
}
mPostend = params.postend;
apr_procattr_t *procattr = NULL;
chkapr(apr_procattr_create(&procattr, gAPRPoolp));
// For which of stdin, stdout, stderr should we create a pipe to the
// child? In the viewer, there are only a couple viable
// apr_procattr_io_set() alternatives: inherit the viewer's own stdxxx
// handle (APR_NO_PIPE, e.g. for stdout, stderr), or create a pipe that's
// blocking on the child end but nonblocking at the viewer end
// Other major options could include explicitly creating a single APR pipe
// and passing it as both stdout and stderr (apr_procattr_child_out_set(),
// apr_procattr_child_err_set()), or accepting a filename, opening it and
// passing that apr_file_t (simple <, >, 2> redirect emulation).
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
std::vector<FileParam> fparams(params.files.begin(), params.files.end());
// By default, pass APR_NO_PIPE for each slot.
std::vector<apr_int32_t> select(LL_ARRAY_SIZE(whichfile), APR_NO_PIPE);
for (size_t i = 0; i < (std::min)(LL_ARRAY_SIZE(whichfile), fparams.size()); ++i)
{
if (std::string(fparams[i].type).empty()) // inherit our file descriptor
{
select[i] = APR_NO_PIPE;
}
else if (std::string(fparams[i].type) == "pipe") // anonymous pipe
{
if (! std::string(fparams[i].name).empty())
{
LL_WARNS("LLProcess") << "For " << std::string(params.executable)
<< ": internal names for reusing pipes ('"
<< std::string(fparams[i].name) << "' for " << whichfile[i]
<< ") are not yet supported -- creating distinct pipe"
<< LL_ENDL;
}
// The viewer can't block for anything: the parent end MUST be
// nonblocking. As the APR documentation itself points out, it
// makes very little sense to set nonblocking I/O for the child
// end of a pipe: only a specially-written child could deal with
// that.
select[i] = APR_CHILD_BLOCK;
}
else
{
throw LLProcessError(STRINGIZE("For " << std::string(params.executable)
<< ": unsupported FileParam for " << whichfile[i]
<< ": type='" << std::string(fparams[i].type)
<< "', name='" << std::string(fparams[i].name) << "'"));
}
}
chkapr(apr_procattr_io_set(procattr, select[STDIN], select[STDOUT], select[STDERR]));
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
// Thumbs down on implicitly invoking the shell to invoke the child. From
// our point of view, the other major alternative to APR_PROGRAM_PATH
// would be APR_PROGRAM_ENV: still copy environment, but require full
// executable pathname. I don't see a downside to searching the PATH,
// though: if our caller wants (e.g.) a specific Python interpreter, s/he
// can still pass the full pathname.
chkapr(apr_procattr_cmdtype_set(procattr, APR_PROGRAM_PATH));
// YES, do extra work if necessary to report child exec() failures back to
// parent process.
chkapr(apr_procattr_error_check_set(procattr, 1));
// Do not start a non-autokill child in detached state. On Posix
// platforms, this setting attempts to daemonize the new child, closing
// std handles and the like, and that's a bit more detachment than we
// want. autokill=false just means not to implicitly kill the child when
// the parent terminates!
// chkapr(apr_procattr_detach_set(procattr, params.autokill? 0 : 1));
if (params.autokill)
{
#if defined(APR_HAS_PROCATTR_AUTOKILL_SET)
apr_status_t ok = apr_procattr_autokill_set(procattr, 1);
# if LL_WINDOWS
// As of 2012-02-02, we only expect this to be implemented on Windows.
// Avoid spamming the log with warnings we fully expect.
ll_apr_warn_status(ok);
#else // ! LL_WINDOWS
(void)ok; // suppress 'unused' warning
# endif // ! LL_WINDOWS
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#else
LL_WARNS("LLProcess") << "This version of APR lacks Linden apr_procattr_autokill_set() extension" << LL_ENDL;
#endif
}
// Have to instantiate named std::strings for string params items so their
// c_str() values persist.
std::string cwd(params.cwd);
if (! cwd.empty())
{
chkapr(apr_procattr_dir_set(procattr, cwd.c_str()));
}
// create an argv vector for the child process
std::vector<const char*> argv;
// add the executable path
std::string executable(params.executable);
argv.push_back(executable.c_str());
// and any arguments
std::vector<std::string> args(params.args.begin(), params.args.end());
BOOST_FOREACH(const std::string& arg, args)
{
argv.push_back(arg.c_str());
}
// terminate with a null pointer
argv.push_back(NULL);
// Launch! The NULL would be the environment block, if we were passing one.
chkapr(apr_proc_create(&mProcess, argv[0], &argv[0], NULL, procattr, gAPRPoolp));
// arrange to call status_callback()
apr_proc_other_child_register(&mProcess, &LLProcess::status_callback, this, mProcess.in,
gAPRPoolp);
// and make sure we poll it once per "mainloop" tick
sProcessListener.addPoll(*this);
mStatus.mState = RUNNING;
mDesc = STRINGIZE(getDesc(params) << " (" << mProcess.pid << ')');
LL_INFOS("LLProcess") << mDesc << ": launched " << params << LL_ENDL;
// Unless caller explicitly turned off autokill (child should persist),
// take steps to terminate the child. This is all suspenders-and-belt: in
// theory our destructor should kill an autokill child, but in practice
// that doesn't always work (e.g. VWR-21538).
if (params.autokill)
{
// Tie the lifespan of this child process to the lifespan of our APR
// pool: on destruction of the pool, forcibly kill the process. Tell
// APR to try SIGTERM and wait 3 seconds. If that didn't work, use
// SIGKILL.
apr_pool_note_subprocess(gAPRPoolp, &mProcess, APR_KILL_AFTER_TIMEOUT);
// On Windows, associate the new child process with our Job Object.
autokill();
}
// Instantiate the proper pipe I/O machinery
// want to be able to point to apr_proc_t::in, out, err by index
typedef apr_file_t* apr_proc_t::*apr_proc_file_ptr;
static apr_proc_file_ptr members[] =
{ &apr_proc_t::in, &apr_proc_t::out, &apr_proc_t::err };
for (size_t i = 0; i < NSLOTS; ++i)
{
if (select[i] != APR_CHILD_BLOCK)
continue;
std::string desc(STRINGIZE(mDesc << ' ' << whichfile[i]));
apr_file_t* pipe(mProcess.*(members[i]));
mPipes.replace(i, new WritePipeImpl(desc, pipe));
mPipes.replace(i, new ReadPipeImpl(desc, pipe));
}
LL_DEBUGS("LLProcess") << "Instantiating " << typeid(mPipes[i]).name()
<< "('" << desc << "')" << LL_ENDL;
// Helper to obtain a description string, given a Params block
static std::string getDesc(const LLProcess::Params& params)
{
// If caller specified a description string, by all means use it.
std::string desc(params.desc);
if (! desc.empty())
return desc;
// Caller didn't say. Use the executable name -- but use just the filename
// part. On Mac, for instance, full pathnames get cumbersome.
// If there are Linden utility functions to manipulate pathnames, I
// haven't found them -- and for this usage, Boost.Filesystem seems kind
// of heavyweight.
std::string executable(params.executable);
std::string::size_type delim = executable.find_last_of("\\/");
// If executable contains no pathname delimiters, return the whole thing.
if (delim == std::string::npos)
return executable;
// Return just the part beyond the last delimiter.
return executable.substr(delim + 1);
}
LLProcess::~LLProcess()
{
// Only in state RUNNING are we registered for callback. In UNSTARTED we
// haven't yet registered. And since receiving the callback is the only
// way we detect child termination, we only change from state RUNNING at
// the same time we unregister.
if (mStatus.mState == RUNNING)
{
// We're still registered for a callback: unregister. Do it before
// we even issue the kill(): even if kill() somehow prompted an
// instantaneous callback (unlikely), this object is going away! Any
// information updated in this object by such a callback is no longer
// available to any consumer anyway.
apr_proc_other_child_unregister(this);
// One less LLProcess to poll for
sProcessListener.dropPoll(*this);
}
if (mAutokill)
{
kill("destructor");
}
}
bool LLProcess::kill(const std::string& who)
{
if (isRunning())
{
LL_INFOS("LLProcess") << who << " killing " << mDesc << LL_ENDL;
#if LL_WINDOWS
int sig = -1;
#else // Posix
int sig = SIGTERM;
#endif
ll_apr_warn_status(apr_proc_kill(&mProcess, sig));
return ! isRunning();
}
bool LLProcess::isRunning(void)
{
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
return getStatus().mState == RUNNING;
}
LLProcess::Status LLProcess::getStatus()
{
return mStatus;
}
std::string LLProcess::getStatusString()
{
return getStatusString(getStatus());
}
std::string LLProcess::getStatusString(const Status& status)
{
return getStatusString(mDesc, status);
}
//static
std::string LLProcess::getStatusString(const std::string& desc, const Status& status)
{
if (status.mState == UNSTARTED)
return desc + " was never launched";
if (status.mState == RUNNING)
return desc + " running";
if (status.mState == EXITED)
return STRINGIZE(desc << " exited with code " << status.mData);
if (status.mState == KILLED)
#if LL_WINDOWS
return STRINGIZE(desc << " killed with exception " << std::hex << status.mData);
#else
return STRINGIZE(desc << " killed by signal " << status.mData
<< " (" << apr_signal_description_get(status.mData) << ")");
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
#endif
return STRINGIZE(desc << " in unknown state " << status.mState << " (" << status.mData << ")");
}
// Classic-C-style APR callback
void LLProcess::status_callback(int reason, void* data, int status)
{
// Our only role is to bounce this static method call back into object
// space.
static_cast<LLProcess*>(data)->handle_status(reason, status);
}
#define tabent(symbol) { symbol, #symbol }
static struct ReasonCode
{
int code;
const char* name;
} reasons[] =
{
tabent(APR_OC_REASON_DEATH),
tabent(APR_OC_REASON_UNWRITABLE),
tabent(APR_OC_REASON_RESTART),
tabent(APR_OC_REASON_UNREGISTER),
tabent(APR_OC_REASON_LOST),
tabent(APR_OC_REASON_RUNNING)
};
#undef tabent
// Object-oriented callback
void LLProcess::handle_status(int reason, int status)
{
{
// This odd appearance of LL_DEBUGS is just to bracket a lookup that will
// only be performed if in fact we're going to produce the log message.
LL_DEBUGS("LLProcess") << empty;
std::string reason_str;
BOOST_FOREACH(const ReasonCode& rcp, reasons)
{
if (reason == rcp.code)
{
reason_str = rcp.name;
break;
}
}
if (reason_str.empty())
{
reason_str = STRINGIZE("unknown reason " << reason);
}
LL_CONT << mDesc << ": handle_status(" << reason_str << ", " << status << ")" << LL_ENDL;
}
if (! (reason == APR_OC_REASON_DEATH || reason == APR_OC_REASON_LOST))
{
// We're only interested in the call when the child terminates.
return;
}
// Somewhat oddly, APR requires that you explicitly unregister even when
// it already knows the child has terminated. We must pass the same 'data'
// pointer as for the register() call, which was our 'this'.
apr_proc_other_child_unregister(this);
// don't keep polling for a terminated process
sProcessListener.dropPoll(*this);
// We overload mStatus.mState to indicate whether the child is registered
// for APR callback: only RUNNING means registered. Track that we've
// unregistered. We know the child has terminated; might be EXITED or
// KILLED; refine below.
mStatus.mState = EXITED;
// wi->rv = apr_proc_wait(wi->child, &wi->rc, &wi->why, APR_NOWAIT);
// It's just wrong to call apr_proc_wait() here. The only way APR knows to
// call us with APR_OC_REASON_DEATH is that it's already reaped this child
// process, so calling wait() will only produce "huh?" from the OS. We
// must rely on the status param passed in, which unfortunately comes
// straight from the OS wait() call, which means we have to decode it by
// hand.
mStatus = interpret_status(status);
LL_INFOS("LLProcess") << getStatusString() << LL_ENDL;
// If caller requested notification on child termination, send it.
if (! mPostend.empty())
{
LLEventPumps::instance().obtain(mPostend)
.post(LLSDMap
("id", getProcessID())
("desc", mDesc)
("state", mStatus.mState)
("data", mStatus.mData)
("string", getStatusString())
);
}
}
LLProcess::id LLProcess::getProcessID() const
{
return mProcess.pid;
}
LLProcess::handle LLProcess::getProcessHandle() const
{
#if LL_WINDOWS
return mProcess.hproc;
#else
return mProcess.pid;
#endif
std::string LLProcess::getPipeName(FILESLOT)
{
// LLProcess::FileParam::type "npipe" is not yet implemented
return "";
}
template<class PIPETYPE>
PIPETYPE* LLProcess::getPipePtr(std::string& error, FILESLOT slot)
{
if (slot >= NSLOTS)
{
error = STRINGIZE(mDesc << " has no slot " << slot);
return NULL;
}
if (mPipes.is_null(slot))
{
error = STRINGIZE(mDesc << ' ' << whichfile[slot] << " not a monitored pipe");
return NULL;
}
// Make sure we dynamic_cast in pointer domain so we can test, rather than
// accepting runtime's exception.
PIPETYPE* ppipe = dynamic_cast<PIPETYPE*>(&mPipes[slot]);
if (! ppipe)
{
error = STRINGIZE(mDesc << ' ' << whichfile[slot] << " not a " << typeid(PIPETYPE).name());
return NULL;
}
error.clear();
return ppipe;
}
template <class PIPETYPE>
PIPETYPE& LLProcess::getPipe(FILESLOT slot)
{
std::string error;
PIPETYPE* wp = getPipePtr<PIPETYPE>(error, slot);
if (! wp)
{
throw NoPipe(error);
}
return *wp;
}
template <class PIPETYPE>
boost::optional<PIPETYPE&> LLProcess::getOptPipe(FILESLOT slot)
{
std::string error;
PIPETYPE* wp = getPipePtr<PIPETYPE>(error, slot);
if (! wp)
{
LL_DEBUGS("LLProcess") << error << LL_ENDL;
return boost::optional<PIPETYPE&>();
}
return *wp;
}
LLProcess::WritePipe& LLProcess::getWritePipe(FILESLOT slot)
{
return getPipe<WritePipe>(slot);
}
boost::optional<LLProcess::WritePipe&> LLProcess::getOptWritePipe(FILESLOT slot)
{
return getOptPipe<WritePipe>(slot);
}
LLProcess::ReadPipe& LLProcess::getReadPipe(FILESLOT slot)
{
return getPipe<ReadPipe>(slot);
}
boost::optional<LLProcess::ReadPipe&> LLProcess::getOptReadPipe(FILESLOT slot)
{
return getOptPipe<ReadPipe>(slot);
std::ostream& operator<<(std::ostream& out, const LLProcess::Params& params)
{
std::string cwd(params.cwd);
if (! cwd.empty())
{
out << "cd " << LLStringUtil::quote(cwd) << ": ";
out << LLStringUtil::quote(params.executable);
BOOST_FOREACH(const std::string& arg, params.args)
{
out << ' ' << LLStringUtil::quote(arg);
}
return out;
}
/*****************************************************************************
* Windows specific
*****************************************************************************/
#if LL_WINDOWS
static std::string WindowsErrorString(const std::string& operation);
void LLProcess::autokill()
// hopefully now handled by apr_procattr_autokill_set()
LLProcess::handle LLProcess::isRunning(handle h, const std::string& desc)
// This direct Windows implementation is because we have no access to the
// apr_proc_t struct: we expect it's been destroyed.
DWORD waitresult = WaitForSingleObject(h, 0);
if(waitresult == WAIT_OBJECT_0)
{
// the process has completed.
if (! desc.empty())
{
DWORD status = 0;
if (! GetExitCodeProcess(h, &status))
{
LL_WARNS("LLProcess") << desc << " terminated, but "
<< WindowsErrorString("GetExitCodeProcess()") << LL_ENDL;
}
{
LL_INFOS("LLProcess") << getStatusString(desc, interpret_status(status))
<< LL_ENDL;
}
CloseHandle(h);
return 0;
}
static LLProcess::Status interpret_status(int status)
LLProcess::Status result;
// This bit of code is cribbed from apr/threadproc/win32/proc.c, a
// function (unfortunately static) called why_from_exit_code():
/* See WinNT.h STATUS_ACCESS_VIOLATION and family for how
* this class of failures was determined
*/
if ((status & 0xFFFF0000) == 0xC0000000)
{
result.mState = LLProcess::KILLED;
}
else
{
result.mState = LLProcess::EXITED;
}
result.mData = status;
return result;
/// GetLastError()/FormatMessage() boilerplate
static std::string WindowsErrorString(const std::string& operation)
{
int result = GetLastError();
LPTSTR error_str = 0;
if (FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
result,
0,
(LPTSTR)&error_str,
0,
NULL)
!= 0)
{
// convert from wide-char string to multi-byte string
char message[256];
wcstombs(message, error_str, sizeof(message));
message[sizeof(message)-1] = 0;
LocalFree(error_str);
// convert to std::string to trim trailing whitespace
std::string mbsstr(message);
mbsstr.erase(mbsstr.find_last_not_of(" \t\r\n"));
return STRINGIZE(operation << " failed (" << result << "): " << mbsstr);