Newer
Older
/**
* @file llprocess.cpp
* @brief Utility class for launching, terminating, and tracking the state of processes.
*
* $LicenseInfo:firstyear=2008&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llprocess.h"
#include "llsdserialize.h"
#include "llsingleton.h"
#include "llstring.h"
#include "stringize.h"
#include "llapr.h"
#include "apr_signal.h"
#include "llevents.h"
#include "llexception.h"
#include <boost/bind.hpp>
#include <boost/asio/streambuf.hpp>
#include <boost/asio/buffers_iterator.hpp>
#include <iostream>
#include <stdexcept>
#include <limits>
#include <algorithm>
#include <vector>
#include <typeinfo>
#include <utility>
/*****************************************************************************
* Helpers
*****************************************************************************/
static const char* whichfile_[] = { "stdin", "stdout", "stderr" };
static std::string empty;
static LLProcess::Status interpret_status(int status);
static std::string getDesc(const LLProcess::Params& params);
static std::string whichfile(LLProcess::FILESLOT index)
{
if (index < LL_ARRAY_SIZE(whichfile_))
return whichfile_[index];
return STRINGIZE("file slot " << index);
}
/**
* Ref-counted "mainloop" listener. As long as there are still outstanding
* LLProcess objects, keep listening on "mainloop" so we can keep polling APR
* for process status.
*/
class LLProcessListener
{
LOG_CLASS(LLProcessListener);
public:
LLProcessListener():
mCount(0)
{}
void addPoll(const LLProcess&)
{
// Unconditionally increment mCount. If it was zero before
// incrementing, listen on "mainloop".
if (mCount++ == 0)
{
LL_DEBUGS("LLProcess") << "listening on \"mainloop\"" << LL_ENDL;
mConnection = LLEventPumps::instance().obtain("mainloop")
.listen("LLProcessListener", boost::bind(&LLProcessListener::tick, this, _1));
}
}
void dropPoll(const LLProcess&)
{
// Unconditionally decrement mCount. If it's zero after decrementing,
// stop listening on "mainloop".
if (--mCount == 0)
{
LL_DEBUGS("LLProcess") << "disconnecting from \"mainloop\"" << LL_ENDL;
mConnection.disconnect();
}
}
private:
/// called once per frame by the "mainloop" LLEventPump
bool tick(const LLSD&)
{
// Tell APR to sense whether each registered LLProcess is still
// running and call handle_status() appropriately. We should be able
// to get the same info from an apr_proc_wait(APR_NOWAIT) call; but at
// least in APR 1.4.2, testing suggests that even with APR_NOWAIT,
// apr_proc_wait() blocks the caller. We can't have that in the
// viewer. Hence the callback rigmarole. (Once we update APR, it's
// probably worth testing again.) Also -- although there's an
// apr_proc_other_child_refresh() call, i.e. get that information for
// one specific child, it accepts an 'apr_other_child_rec_t*' that's
// mentioned NOWHERE else in the documentation or header files! I
// would use the specific call in LLProcess::getStatus() if I knew
// how. As it is, each call to apr_proc_other_child_refresh_all() will
// call callbacks for ALL still-running child processes. That's why we
// centralize such calls, using "mainloop" to ensure it happens once
// per frame, and refcounting running LLProcess objects to remain
// registered only while needed.
LL_DEBUGS("LLProcess") << "calling apr_proc_other_child_refresh_all()" << LL_ENDL;
apr_proc_other_child_refresh_all(APR_OC_REASON_RUNNING);
return false;
}
/// If this object is destroyed before mCount goes to zero, stop
/// listening on "mainloop" anyway.
LLTempBoundListener mConnection;
unsigned mCount;
};
static LLProcessListener sProcessListener;
/*****************************************************************************
* WritePipe and ReadPipe
*****************************************************************************/
const LLProcess::BasePipe::size_type
// use funky syntax to call max() to avoid blighted max() macros
LLProcess::BasePipe::npos((std::numeric_limits<LLProcess::BasePipe::size_type>::max)());
class WritePipeImpl: public LLProcess::WritePipe
{
LOG_CLASS(WritePipeImpl);
public:
WritePipeImpl(const std::string& desc, apr_file_t* pipe):
mDesc(desc),
mPipe(pipe),
// Essential to initialize our std::ostream with our special streambuf!
mStream(&mStreambuf)
{
mConnection = LLEventPumps::instance().obtain("mainloop")
.listen(LLEventPump::inventName("WritePipe"),
boost::bind(&WritePipeImpl::tick, this, _1));
#if ! LL_WINDOWS
// We can't count on every child process reading everything we try to
// write to it. And if the child terminates with WritePipe data still
// pending, unless we explicitly suppress it, Posix will hit us with
// SIGPIPE. That would terminate the viewer, boom. "Ignoring" it means
// APR gets the correct errno, passes it back to us, we log it, etc.
signal(SIGPIPE, SIG_IGN);
#endif
}
virtual std::ostream& get_ostream() { return mStream; }
virtual size_type size() const { return mStreambuf.size(); }
bool tick(const LLSD&)
{
typedef boost::asio::streambuf::const_buffers_type const_buffer_sequence;
// If there's anything to send, try to send it.
std::size_t total(mStreambuf.size()), consumed(0);
if (total)
const_buffer_sequence bufs = mStreambuf.data();
// In general, our streambuf might contain a number of different
// physical buffers; iterate over those.
bool keepwriting = true;
for (const_buffer_sequence::const_iterator bufi(bufs.begin()), bufend(bufs.end());
bufi != bufend && keepwriting; ++bufi)
{
// http://www.boost.org/doc/libs/1_49_0_beta1/doc/html/boost_asio/reference/buffer.html#boost_asio.reference.buffer.accessing_buffer_contents
// Although apr_file_write() accepts const void*, we
// manipulate const char* so we can increment the pointer.
const char* remainptr = boost::asio::buffer_cast<const char*>(*bufi);
std::size_t remainlen = boost::asio::buffer_size(*bufi);
while (remainlen)
// Tackle the current buffer in discrete chunks. On
// Windows, we've observed strange failures when trying to
// write big lengths (~1 MB) in a single operation. Even a
// 32K chunk seems too large. At some point along the way
// apr_file_write() returns 11 (Resource temporarily
// unavailable, i.e. EAGAIN) and says it wrote 0 bytes --
// even though it did write the chunk! Our next write
// attempt retries with the same chunk, resulting in the
// chunk being duplicated at the child end. Using smaller
// chunks is empirically more reliable.
std::size_t towrite((std::min)(remainlen, std::size_t(4*1024)));
apr_size_t written(towrite);
apr_status_t err = apr_file_write(mPipe, remainptr, &written);
// EAGAIN is exactly what we want from a nonblocking pipe.
// Rather than waiting for data, it should return immediately.
if (! (err == APR_SUCCESS || APR_STATUS_IS_EAGAIN(err)))
{
LL_WARNS("LLProcess") << "apr_file_write(" << towrite << ") on " << mDesc
<< " got " << err << ":" << LL_ENDL;
ll_apr_warn_status(err);
}
// 'written' is modified to reflect the number of bytes actually
// written. Make sure we consume those later. (Don't consume them
// now, that would invalidate the buffer iterator sequence!)
consumed += written;
// don't forget to advance to next chunk of current buffer
remainptr += written;
remainlen -= written;
char msgbuf[512];
LL_DEBUGS("LLProcess") << "wrote " << written << " of " << towrite
<< " bytes to " << mDesc
<< " (original " << total << "),"
<< " code " << err << ": "
<< apr_strerror(err, msgbuf, sizeof(msgbuf))
<< LL_ENDL;
// The parent end of this pipe is nonblocking. If we weren't able
// to write everything we wanted, don't keep banging on it -- that
// won't change until the child reads some. Wait for next tick().
if (written < towrite)
{
keepwriting = false; // break outer loop over buffers too
break;
}
} // next chunk of current buffer
} // next buffer
// In all, we managed to write 'consumed' bytes. Remove them from the
// streambuf so we don't keep trying to send them. This could be
// anywhere from 0 up to mStreambuf.size(); anything we haven't yet
// sent, we'll try again later.
mStreambuf.consume(consumed);
return false;
}
private:
std::string mDesc;
apr_file_t* mPipe;
LLTempBoundListener mConnection;
boost::asio::streambuf mStreambuf;
std::ostream mStream;
};
class ReadPipeImpl: public LLProcess::ReadPipe
{
LOG_CLASS(ReadPipeImpl);
ReadPipeImpl(const std::string& desc, apr_file_t* pipe, LLProcess::FILESLOT index):
mIndex(index),
// Essential to initialize our std::istream with our special streambuf!
mStream(&mStreambuf),
mPump("ReadPipe", true), // tweak name as needed to avoid collisions
mLimit(0),
mEOF(false)
{
mConnection = LLEventPumps::instance().obtain("mainloop")
.listen(LLEventPump::inventName("ReadPipe"),
boost::bind(&ReadPipeImpl::tick, this, _1));
}
// Much of the implementation is simply connecting the abstract virtual
// methods with implementation data concealed from the base class.
virtual std::istream& get_istream() { return mStream; }
virtual std::string getline() { return LLProcess::getline(mStream); }
virtual LLEventPump& getPump() { return mPump; }
virtual void setLimit(size_type limit) { mLimit = limit; }
virtual size_type getLimit() const { return mLimit; }
virtual size_type size() const { return mStreambuf.size(); }
virtual std::string read(size_type len)
{
// Read specified number of bytes into a buffer.
size_type readlen((std::min)(size(), len));
// Formally, &buffer[0] is invalid for a vector of size() 0. Exit
// early in that situation.
if (! readlen)
return "";
// Make a buffer big enough.
std::vector<char> buffer(readlen);
mStream.read(&buffer[0], readlen);
// Since we've already clamped 'readlen', we can think of no reason
// why mStream.read() should read fewer than 'readlen' bytes.
// Nonetheless, use the actual retrieved length.
return std::string(&buffer[0], mStream.gcount());
}
virtual std::string peek(size_type offset=0, size_type len=npos) const
{
// Constrain caller's offset and len to overlap actual buffer content.
std::size_t real_offset = (std::min)(mStreambuf.size(), std::size_t(offset));
size_type want_end = (len == npos)? npos : (real_offset + len);
std::size_t real_end = (std::min)(mStreambuf.size(), std::size_t(want_end));
boost::asio::streambuf::const_buffers_type cbufs = mStreambuf.data();
return std::string(boost::asio::buffers_begin(cbufs) + real_offset,
boost::asio::buffers_begin(cbufs) + real_end);
}
virtual size_type find(const std::string& seek, size_type offset=0) const
// If we're passing a string of length 1, use find(char), which can
// use an O(n) std::find() rather than the O(n^2) std::search().
if (seek.length() == 1)
{
return find(seek[0], offset);
}
// If offset is beyond the whole buffer, can't even construct a valid
// iterator range; can't possibly find the string we seek.
if (offset > mStreambuf.size())
{
return npos;
}
boost::asio::streambuf::const_buffers_type cbufs = mStreambuf.data();
boost::asio::buffers_iterator<boost::asio::streambuf::const_buffers_type>
begin(boost::asio::buffers_begin(cbufs)),
end (boost::asio::buffers_end(cbufs)),
found(std::search(begin + offset, end, seek.begin(), seek.end()));
return (found == end)? npos : (found - begin);
virtual size_type find(char seek, size_type offset=0) const
// If offset is beyond the whole buffer, can't even construct a valid
// iterator range; can't possibly find the char we seek.
if (offset > mStreambuf.size())
return npos;
boost::asio::streambuf::const_buffers_type cbufs = mStreambuf.data();
boost::asio::buffers_iterator<boost::asio::streambuf::const_buffers_type>
begin(boost::asio::buffers_begin(cbufs)),
end (boost::asio::buffers_end(cbufs)),
found(std::find(begin + offset, end, seek));
return (found == end)? npos : (found - begin);
}
bool tick(const LLSD&)
{
// Once we've hit EOF, skip all the rest of this.
if (mEOF)
return false;
typedef boost::asio::streambuf::mutable_buffers_type mutable_buffer_sequence;
// Try, every time, to read into our streambuf. In fact, we have no
// idea how much data the child might be trying to send: keep trying
// until we're convinced we've temporarily exhausted the pipe.
enum PipeState { RETRY, EXHAUSTED, CLOSED };
PipeState state = RETRY;
std::size_t committed(0);
do
// attempt to read an arbitrary size
mutable_buffer_sequence bufs = mStreambuf.prepare(4096);
// In general, the mutable_buffer_sequence returned by prepare() might
// contain a number of different physical buffers; iterate over those.
std::size_t tocommit(0);
for (mutable_buffer_sequence::const_iterator bufi(bufs.begin()), bufend(bufs.end());
bufi != bufend; ++bufi)
// http://www.boost.org/doc/libs/1_49_0_beta1/doc/html/boost_asio/reference/buffer.html#boost_asio.reference.buffer.accessing_buffer_contents
std::size_t toread(boost::asio::buffer_size(*bufi));
apr_size_t gotten(toread);
apr_status_t err = apr_file_read(mPipe,
boost::asio::buffer_cast<void*>(*bufi),
&gotten);
// EAGAIN is exactly what we want from a nonblocking pipe.
// Rather than waiting for data, it should return immediately.
if (! (err == APR_SUCCESS || APR_STATUS_IS_EAGAIN(err)))
{
// Handle EOF specially: it's part of normal-case processing.
if (err == APR_EOF)
{
LL_DEBUGS("LLProcess") << "EOF on " << mDesc << LL_ENDL;
}
else
{
LL_WARNS("LLProcess") << "apr_file_read(" << toread << ") on " << mDesc
<< " got " << err << ":" << LL_ENDL;
ll_apr_warn_status(err);
}
// Either way, though, we won't need any more tick() calls.
mConnection.disconnect();
// Ignore any subsequent calls we might get anyway.
mEOF = true;
state = CLOSED; // also break outer retry loop
break;
}
// 'gotten' was modified to reflect the number of bytes actually
// received. Make sure we commit those later. (Don't commit them
// now, that would invalidate the buffer iterator sequence!)
tocommit += gotten;
LL_DEBUGS("LLProcess") << "filled " << gotten << " of " << toread
<< " bytes from " << mDesc << LL_ENDL;
// The parent end of this pipe is nonblocking. If we weren't even
// able to fill this buffer, don't loop to try to fill the next --
// that won't change until the child writes more. Wait for next
// tick().
if (gotten < toread)
{
// break outer retry loop too
state = EXHAUSTED;
break;
}
// Don't forget to "commit" the data!
mStreambuf.commit(tocommit);
committed += tocommit;
// state is changed from RETRY when we can't fill any one buffer
// of the mutable_buffer_sequence established by the current
// prepare() call -- whether due to error or not enough bytes.
// That is, if state is still RETRY, we've filled every physical
// buffer in the mutable_buffer_sequence. In that case, for all we
// know, the child might have still more data pending -- go for it!
} while (state == RETRY);
// Once we recognize that the pipe is closed, make one more call to
// listener. The listener might be waiting for a particular substring
// to arrive, or a particular length of data or something. The event
// with "eof" == true announces that nothing further will arrive, so
// use it or lose it.
if (committed || state == CLOSED)
{
// If we actually received new data, publish it on our LLEventPump
// as advertised. Constrain it by mLimit. But show listener the
// actual accumulated buffer size, regardless of mLimit.
size_type datasize((std::min)(mLimit, size_type(mStreambuf.size())));
mPump.post(LLSDMap
("data", peek(0, datasize))
("len", LLSD::Integer(mStreambuf.size()))
("slot", LLSD::Integer(mIndex))
("name", whichfile(mIndex))
("desc", mDesc)
("eof", state == CLOSED));
private:
std::string mDesc;
apr_file_t* mPipe;
LLProcess::FILESLOT mIndex;
LLTempBoundListener mConnection;
boost::asio::streambuf mStreambuf;
std::istream mStream;
LLEventStream mPump;
size_type mLimit;
bool mEOF;
/*****************************************************************************
* LLProcess itself
*****************************************************************************/
/// Need an exception to avoid constructing an invalid LLProcess object, but
/// internal use only
struct LLProcessError: public LLException
LLProcessError(const std::string& msg): LLException(msg) {}
LLProcessPtr LLProcess::create(const LLSDOrParams& params)
{
try
{
return LLProcessPtr(new LLProcess(params));
}
catch (const LLProcessError& e)
{
LL_WARNS("LLProcess") << e.what() << LL_ENDL;
// If caller is requesting an event on process termination, send one
// indicating bad launch. This may prevent someone waiting forever for
// a termination post that can't arrive because the child never
// started.
if (params.postend.isProvided())
{
LLEventPumps::instance().obtain(params.postend)
.post(LLSDMap
// no "id"
("desc", getDesc(params))
("state", LLProcess::UNSTARTED)
// no "data"
("string", e.what())
);
}
return LLProcessPtr();
}
}
/// Call an apr function returning apr_status_t. On failure, log warning and
/// throw LLProcessError mentioning the function call that produced that
/// result.
#define chkapr(func) \
if (ll_apr_warn_status(func)) \
throw LLProcessError(#func " failed")
LLProcess::LLProcess(const LLSDOrParams& params):
Callum Prentice
committed
// Because 'autokill' originally meant both 'autokill' and 'attached', to
// preserve existing semantics, we promise that mAttached defaults to the
// same setting as mAutokill.
mAttached(params.attached.isProvided()? params.attached : params.autokill),
// Hmm, when you construct a ptr_vector with a size, it merely reserves
// space, it doesn't actually make it that big. Explicitly make it bigger.
// Because of ptr_vector's odd semantics, have to push_back(0) the right
// number of times! resize() wants to default-construct new BasePipe
// instances, which fails because it's pure virtual. But because of the
// constructor call, these push_back() calls should require no new
// allocation.
for (size_t i = 0; i < mPipes.capacity(); ++i)
mPipes.push_back(0);
if (! params.validateBlock(true))
LLTHROW(LLProcessError(STRINGIZE("not launched: failed parameter validation\n"
<< LLSDNotationStreamer(params))));
mPostend = params.postend;
apr_procattr_t *procattr = NULL;
chkapr(apr_procattr_create(&procattr, gAPRPoolp));
// IQA-490, CHOP-900: On Windows, ask APR to jump through hoops to
// constrain the set of handles passed to the child process. Before we
// changed to APR, the Windows implementation of LLProcessLauncher called
// CreateProcess(bInheritHandles=FALSE), meaning to pass NO open handles
// to the child process. Now that we support pipes, though, we must allow
// apr_proc_create() to pass bInheritHandles=TRUE. But without taking
// special pains, that causes trouble in a number of ways, due to the fact
// that the viewer is constantly opening and closing files -- most of
// which CreateProcess() passes to every child process!
#if ! defined(APR_HAS_PROCATTR_CONSTRAIN_HANDLE_SET)
// Our special preprocessor symbol isn't even defined -- wrong APR
LL_WARNS("LLProcess") << "This version of APR lacks Linden "
<< "apr_procattr_constrain_handle_set() extension" << LL_ENDL;
#else
chkapr(apr_procattr_constrain_handle_set(procattr, 1));
#endif
// For which of stdin, stdout, stderr should we create a pipe to the
// child? In the viewer, there are only a couple viable
// apr_procattr_io_set() alternatives: inherit the viewer's own stdxxx
// handle (APR_NO_PIPE, e.g. for stdout, stderr), or create a pipe that's
// blocking on the child end but nonblocking at the viewer end
// Other major options could include explicitly creating a single APR pipe
// and passing it as both stdout and stderr (apr_procattr_child_out_set(),
// apr_procattr_child_err_set()), or accepting a filename, opening it and
// passing that apr_file_t (simple <, >, 2> redirect emulation).
std::vector<apr_int32_t> select;
for(const FileParam& fparam : params.files)
{
// Every iteration, we're going to append an item to 'select'. At the
// top of the loop, its size() is, in effect, an index. Use that to
// pick a string description for messages.
std::string which(whichfile(FILESLOT(select.size())));
if (fparam.type().empty()) // inherit our file descriptor
select.push_back(APR_NO_PIPE);
else if (fparam.type() == "pipe") // anonymous pipe
if (! fparam.name().empty())
LL_WARNS("LLProcess") << "For " << params.executable()
<< ": internal names for reusing pipes ('"
<< fparam.name() << "' for " << which
<< ") are not yet supported -- creating distinct pipe"
<< LL_ENDL;
}
// The viewer can't block for anything: the parent end MUST be
// nonblocking. As the APR documentation itself points out, it
// makes very little sense to set nonblocking I/O for the child
// end of a pipe: only a specially-written child could deal with
// that.
select.push_back(APR_CHILD_BLOCK);
LLTHROW(LLProcessError(STRINGIZE("For " << params.executable()
<< ": unsupported FileParam for " << which
<< ": type='" << fparam.type()
<< "', name='" << fparam.name() << "'")));
// By default, pass APR_NO_PIPE for unspecified slots.
while (select.size() < NSLOTS)
{
select.push_back(APR_NO_PIPE);
}
chkapr(apr_procattr_io_set(procattr, select[STDIN], select[STDOUT], select[STDERR]));
// Thumbs down on implicitly invoking the shell to invoke the child. From
// our point of view, the other major alternative to APR_PROGRAM_PATH
// would be APR_PROGRAM_ENV: still copy environment, but require full
// executable pathname. I don't see a downside to searching the PATH,
// though: if our caller wants (e.g.) a specific Python interpreter, s/he
// can still pass the full pathname.
chkapr(apr_procattr_cmdtype_set(procattr, APR_PROGRAM_PATH));
// YES, do extra work if necessary to report child exec() failures back to
// parent process.
chkapr(apr_procattr_error_check_set(procattr, 1));
// Do not start a non-autokill child in detached state. On Posix
// platforms, this setting attempts to daemonize the new child, closing
// std handles and the like, and that's a bit more detachment than we
// want. autokill=false just means not to implicitly kill the child when
// the parent terminates!
Callum Prentice
committed
// chkapr(apr_procattr_detach_set(procattr, mAutokill? 0 : 1));
Callum Prentice
committed
if (mAutokill)
#if ! defined(APR_HAS_PROCATTR_AUTOKILL_SET)
// Our special preprocessor symbol isn't even defined -- wrong APR
LL_WARNS("LLProcess") << "This version of APR lacks Linden apr_procattr_autokill_set() extension" << LL_ENDL;
#elif ! APR_HAS_PROCATTR_AUTOKILL_SET
// Symbol is defined, but to 0: expect apr_procattr_autokill_set() to
// return APR_ENOTIMPL.
#else // APR_HAS_PROCATTR_AUTOKILL_SET nonzero
ll_apr_warn_status(apr_procattr_autokill_set(procattr, 1));
#endif
}
// In preparation for calling apr_proc_create(), we collect a number of
// const char* pointers obtained from std::string::c_str(). Turns out
// LLInitParam::Block's helpers Optional, Mandatory, Multiple et al.
// guarantee that converting to the wrapped type (std::string in our
// case), e.g. by calling operator(), returns a reference to *the same
// instance* of the wrapped type that's stored in our Block subclass.
// That's important! We know 'params' persists throughout this method
// call; but without that guarantee, we'd have to assume that converting
// one of its members to std::string might return a different (temp)
// instance. Capturing the c_str() from a temporary std::string is Bad Bad
// Bad. But armed with this knowledge, when you see params.cwd().c_str(),
// grit your teeth and smile and carry on.
if (params.cwd.isProvided())
chkapr(apr_procattr_dir_set(procattr, params.cwd().c_str()));
}
// create an argv vector for the child process
std::vector<const char*> argv;
// Add the executable path. See above remarks about c_str().
argv.push_back(params.executable().c_str());
// Add arguments. See above remarks about c_str().
for(const std::string& arg: params.args)
{
argv.push_back(arg.c_str());
}
// terminate with a null pointer
argv.push_back(NULL);
// Launch! The NULL would be the environment block, if we were passing
// one. Hand-expand chkapr() macro so we can fill in the actual command
// string instead of the variable names.
if (ll_apr_warn_status(apr_proc_create(&mProcess, argv[0], &argv[0], NULL, procattr,
gAPRPoolp)))
{
LLTHROW(LLProcessError(STRINGIZE(params << " failed")));
// arrange to call status_callback()
apr_proc_other_child_register(&mProcess, &LLProcess::status_callback, this, mProcess.in,
gAPRPoolp);
// and make sure we poll it once per "mainloop" tick
sProcessListener.addPoll(*this);
mStatus.mState = RUNNING;
mDesc = STRINGIZE(getDesc(params) << " (" << mProcess.pid << ')');
LL_INFOS("LLProcess") << mDesc << ": launched " << params << LL_ENDL;
// Unless caller explicitly turned off autokill (child should persist),
// take steps to terminate the child. This is all suspenders-and-belt: in
// theory our destructor should kill an autokill child, but in practice
// that doesn't always work (e.g. VWR-21538).
Callum Prentice
committed
if (mAutokill)
/*==========================================================================*|
// NO: There may be an APR bug, not sure -- but at least on Mac, when
// gAPRPoolp is destroyed, OUR process receives SIGTERM! Apparently
// either our own PID is getting into the list of processes to kill()
// (unlikely), or somehow one of those PIDs is getting zeroed first,
// so that kill() sends SIGTERM to the whole process group -- this
// process included. I'd have to build and link with a debug version
// of APR to know for sure. It's too bad: this mechanism would be just
// right for dealing with static autokill LLProcessPtr variables,
// which aren't destroyed until after APR is no longer available.
// Tie the lifespan of this child process to the lifespan of our APR
// pool: on destruction of the pool, forcibly kill the process. Tell
// APR to try SIGTERM and suspend 3 seconds. If that didn't work, use
// SIGKILL.
apr_pool_note_subprocess(gAPRPoolp, &mProcess, APR_KILL_AFTER_TIMEOUT);
|*==========================================================================*/
// On Windows, associate the new child process with our Job Object.
autokill();
}
// Instantiate the proper pipe I/O machinery
// want to be able to point to apr_proc_t::in, out, err by index
typedef apr_file_t* apr_proc_t::*apr_proc_file_ptr;
static apr_proc_file_ptr members[] =
{ &apr_proc_t::in, &apr_proc_t::out, &apr_proc_t::err };
for (size_t i = 0; i < NSLOTS; ++i)
{
if (select[i] != APR_CHILD_BLOCK)
continue;
std::string desc(STRINGIZE(mDesc << ' ' << whichfile(FILESLOT(i))));
apr_file_t* pipe(mProcess.*(members[i]));
mPipes.replace(i, new WritePipeImpl(desc, pipe));
mPipes.replace(i, new ReadPipeImpl(desc, pipe, FILESLOT(i)));
callum_linden
committed
// Removed temporaily for Xcode 7 build tests: error was:
// "error: expression with side effects will be evaluated despite
// being used as an operand to 'typeid' [-Werror,-Wpotentially-evaluated-expression]""
//LL_DEBUGS("LLProcess") << "Instantiating " << typeid(mPipes[i]).name()
// << "('" << desc << "')" << LL_ENDL;
// Helper to obtain a description string, given a Params block
static std::string getDesc(const LLProcess::Params& params)
{
// If caller specified a description string, by all means use it.
if (params.desc.isProvided())
return params.desc;
// Caller didn't say. Use the executable name -- but use just the filename
// part. On Mac, for instance, full pathnames get cumbersome.
return LLProcess::basename(params.executable);
}
//static
std::string LLProcess::basename(const std::string& path)
{
// If there are Linden utility functions to manipulate pathnames, I
// haven't found them -- and for this usage, Boost.Filesystem seems kind
// of heavyweight.
std::string::size_type delim = path.find_last_of("\\/");
// If path contains no pathname delimiters, return the whole thing.
if (delim == std::string::npos)
return path;
// Return just the part beyond the last delimiter.
return path.substr(delim + 1);
LLProcess::~LLProcess()
{
// In the Linden viewer, there's at least one static LLProcessPtr. Its
// destructor will be called *after* ll_cleanup_apr(). In such a case,
// unregistering is pointless (and fatal!) -- and kill(), which also
// relies on APR, is impossible.
if (! gAPRPoolp)
return;
// Only in state RUNNING are we registered for callback. In UNSTARTED we
// haven't yet registered. And since receiving the callback is the only
// way we detect child termination, we only change from state RUNNING at
// the same time we unregister.
if (mStatus.mState == RUNNING)
{
// We're still registered for a callback: unregister. Do it before
// we even issue the kill(): even if kill() somehow prompted an
// instantaneous callback (unlikely), this object is going away! Any
// information updated in this object by such a callback is no longer
// available to any consumer anyway.
apr_proc_other_child_unregister(this);
// One less LLProcess to poll for
sProcessListener.dropPoll(*this);
}
Callum Prentice
committed
if (mAttached)
kill("destructor");
}
}
bool LLProcess::kill(const std::string& who)
{
if (isRunning())
{
LL_INFOS("LLProcess") << who << " killing " << mDesc << LL_ENDL;
#if LL_WINDOWS
int sig = -1;
#else // Posix
int sig = SIGTERM;
#endif
ll_apr_warn_status(apr_proc_kill(&mProcess, sig));
return ! isRunning();
//static
bool LLProcess::kill(const LLProcessPtr& p, const std::string& who)
{
if (! p)
return true; // process dead! (was never running)
return p->kill(who);
}
bool LLProcess::isRunning() const
return getStatus().mState == RUNNING;
}
//static
bool LLProcess::isRunning(const LLProcessPtr& p)
{
if (! p)
return false;
return p->isRunning();
}
LLProcess::Status LLProcess::getStatus() const
{
return mStatus;
}
//static
LLProcess::Status LLProcess::getStatus(const LLProcessPtr& p)
{
if (! p)
{
// default-constructed Status has mState == UNSTARTED
return Status();
}
return p->getStatus();
}
std::string LLProcess::getStatusString() const
{
return getStatusString(getStatus());
}
std::string LLProcess::getStatusString(const Status& status) const
{
return getStatusString(mDesc, status);
}
//static
std::string LLProcess::getStatusString(const std::string& desc, const LLProcessPtr& p)
{
if (! p)
{
// default-constructed Status has mState == UNSTARTED
return getStatusString(desc, Status());
}
return desc + " " + p->getStatusString();
}
//static
std::string LLProcess::getStatusString(const std::string& desc, const Status& status)
{
if (status.mState == UNSTARTED)
return desc + " was never launched";
if (status.mState == RUNNING)
return desc + " running";
if (status.mState == EXITED)
return STRINGIZE(desc << " exited with code " << status.mData);
if (status.mState == KILLED)
#if LL_WINDOWS
return STRINGIZE(desc << " killed with exception " << std::hex << status.mData);
#else
return STRINGIZE(desc << " killed by signal " << status.mData
<< " (" << apr_signal_description_get(status.mData) << ")");
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
#endif
return STRINGIZE(desc << " in unknown state " << status.mState << " (" << status.mData << ")");
}
// Classic-C-style APR callback
void LLProcess::status_callback(int reason, void* data, int status)
{
// Our only role is to bounce this static method call back into object
// space.
static_cast<LLProcess*>(data)->handle_status(reason, status);
}
#define tabent(symbol) { symbol, #symbol }
static struct ReasonCode
{
int code;
const char* name;
} reasons[] =
{
tabent(APR_OC_REASON_DEATH),
tabent(APR_OC_REASON_UNWRITABLE),
tabent(APR_OC_REASON_RESTART),
tabent(APR_OC_REASON_UNREGISTER),
tabent(APR_OC_REASON_LOST),
tabent(APR_OC_REASON_RUNNING)
};
#undef tabent
// Object-oriented callback
void LLProcess::handle_status(int reason, int status)
{
{
// This odd appearance of LL_DEBUGS is just to bracket a lookup that will
// only be performed if in fact we're going to produce the log message.
LL_DEBUGS("LLProcess") << empty;
std::string reason_str;
for(const ReasonCode& rcp : reasons)
{
if (reason == rcp.code)
{
reason_str = rcp.name;
break;
}
}
if (reason_str.empty())
{
reason_str = STRINGIZE("unknown reason " << reason);
}
LL_CONT << mDesc << ": handle_status(" << reason_str << ", " << status << ")" << LL_ENDL;
}
if (! (reason == APR_OC_REASON_DEATH || reason == APR_OC_REASON_LOST))
{
// We're only interested in the call when the child terminates.
return;
}
// Somewhat oddly, APR requires that you explicitly unregister even when
// it already knows the child has terminated. We must pass the same 'data'
// pointer as for the register() call, which was our 'this'.
apr_proc_other_child_unregister(this);
// don't keep polling for a terminated process
sProcessListener.dropPoll(*this);
// We overload mStatus.mState to indicate whether the child is registered
// for APR callback: only RUNNING means registered. Track that we've
// unregistered. We know the child has terminated; might be EXITED or
// KILLED; refine below.
mStatus.mState = EXITED;
// Make last-gasp calls for each of the ReadPipes we have on hand. Since
// they're listening on "mainloop", we can be sure they'll eventually
// collect all pending data from the child. But we want to be able to
// guarantee to our consumer that by the time we post on the "postend"
// LLEventPump, our ReadPipes are already buffering all the data there
// will ever be from the child. That lets the "postend" listener decide
// what to do with that final data.
for (size_t i = 0; i < mPipes.size(); ++i)
{
std::string error;
ReadPipeImpl* ppipe = getPipePtr<ReadPipeImpl>(error, FILESLOT(i));
if (ppipe)
{
static LLSD trivial;
ppipe->tick(trivial);
}
}
// wi->rv = apr_proc_wait(wi->child, &wi->rc, &wi->why, APR_NOWAIT);
// It's just wrong to call apr_proc_wait() here. The only way APR knows to
// call us with APR_OC_REASON_DEATH is that it's already reaped this child
// process, so calling wait() will only produce "huh?" from the OS. We
// must rely on the status param passed in, which unfortunately comes
// straight from the OS wait() call, which means we have to decode it by
// hand.
mStatus = interpret_status(status);
LL_INFOS("LLProcess") << getStatusString() << LL_ENDL;